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XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.
It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree
boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same
code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.
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2 Contents



CHAPTER 1

Contents

1.1 Installation Guide

Note: Pre-built binary wheel for Python

If you are planning to use Python on a Linux system, consider installing XGBoost from a pre-built binary wheel. The
wheel is available from Python Package Index (PyPI). You may download and install it by running

# Ensure that you are downloading xgboost-{version}-py2.py3-none-manylinux1_x86_64.whl
pip3 install xgboost

• This package will support GPU algorithms (gpu_exact, gpu_hist) on machines with NVIDIA GPUs.

• Currently, PyPI has a binary wheel only for 64-bit Linux.

1.1.1 Building XGBoost from source

This page gives instructions on how to build and install XGBoost from scratch on various systems. It consists of two
steps:

1. First build the shared library from the C++ codes (libxgboost.so for Linux/OSX and xgboost.dll for
Windows). (For R-package installation, please directly refer to R Package Installation.)

2. Then install the language packages (e.g. Python Package).

Note: Use of Git submodules

XGBoost uses Git submodules to manage dependencies. So when you clone the repo, remember to specify
--recursive option:

git clone --recursive https://github.com/dmlc/xgboost

3
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For windows users who use github tools, you can open the git shell and type the following command:

git submodule init
git submodule update

Please refer to Trouble Shooting section first if you have any problem during installation. If the instructions do not
work for you, please feel free to ask questions at the user forum.

Contents

• Building the Shared Library

– Building on Ubuntu/Debian

– Building on OSX

– Building on Windows

– Building with GPU support

– Customized Building

• Python Package Installation

• R Package Installation

• Trouble Shooting

1.1.2 Building the Shared Library

Our goal is to build the shared library:

• On Linux/OSX the target library is libxgboost.so

• On Windows the target library is xgboost.dll

The minimal building requirement is

• A recent C++ compiler supporting C++11 (g++-4.8 or higher)

We can edit make/config.mk to change the compile options, and then build by make. If everything goes well, we
can go to the specific language installation section.

Building on Ubuntu/Debian

On Ubuntu, one builds XGBoost by running

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost; make -j4

Building on OSX

Install with pip: simple method

First, make sure you obtained gcc-5 (newer version does not work with this method yet). Note: installation of gcc
can take a while (~ 30 minutes).

4 Chapter 1. Contents
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brew install gcc@5

Then install XGBoost with pip:

pip3 install xgboost

You might need to run the command with sudo if you run into permission errors.

Build from the source code - advanced method

First, obtain gcc-7 with homebrew (https://brew.sh/) if you want multi-threaded version. Clang is okay if multi-
threading is not required. Note: installation of gcc can take a while (~ 30 minutes).

brew install gcc@7

Now, clone the repository:

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost; cp make/config.mk ./config.mk

Open config.mk and uncomment these two lines:

export CC = gcc
export CXX = g++

and replace these two lines as follows: (specify the GCC version)

export CC = gcc-7
export CXX = g++-7

Now, you may build XGBoost using the following command:

make -j4

You may now continue to Python Package Installation.

Building on Windows

You need to first clone the XGBoost repo with --recursive option, to clone the submodules. We recommend you
use Git for Windows, as it comes with a standard Bash shell. This will highly ease the installation process.

git submodule init
git submodule update

XGBoost support compilation with Microsoft Visual Studio and MinGW.

Compile XGBoost using MinGW

After installing Git for Windows, you should have a shortcut named Git Bash. You should run all subsequent steps
in Git Bash.

In MinGW, make command comes with the name mingw32-make. You can add the following line into the .
bashrc file:

1.1. Installation Guide 5
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alias make='mingw32-make'

(On 64-bit Windows, you should get MinGW64 instead.) Make sure that the path to MinGW is in the system PATH.

To build with MinGW, type:

cp make/mingw64.mk config.mk; make -j4

Compile XGBoost with Microsoft Visual Studio

To build with Visual Studio, we will need CMake. Make sure to install a recent version of CMake. Then run the
following from the root of the XGBoost directory:

mkdir build
cd build
cmake .. -G"Visual Studio 12 2013 Win64"

This specifies an out of source build using the MSVC 12 64 bit generator. Open the .sln file in the build directory
and build with Visual Studio. To use the Python module you can copy xgboost.dll into python-package/
xgboost.

After the build process successfully ends, you will find a xgboost.dll library file inside ./lib/ folder, copy this
file to the the API package folder like python-package/xgboost if you are using Python API.

Unofficial windows binaries and instructions on how to use them are hosted on Guido Tapia’s blog.

Building with GPU support

XGBoost can be built with GPU support for both Linux and Windows using CMake. GPU support works with the
Python package as well as the CLI version. See Installing R package with GPU support for special instructions for R.

An up-to-date version of the CUDA toolkit is required.

From the command line on Linux starting from the xgboost directory:

mkdir build
cd build
cmake .. -DUSE_CUDA=ON
make -j

Note: Windows requirements for GPU build

Only Visual C++ 2015 or 2013 with CUDA v8.0 were fully tested. Either install Visual C++ 2015 Build Tools
separately, or as a part of Visual Studio 2015. If you already have Visual Studio 2017, the Visual C++ 2015 Toolchain
componenet has to be installed using the VS 2017 Installer. Likely, you would need to use the VS2015 x64 Native
Tools command prompt to run the cmake commands given below. In some situations, however, things run just fine
from MSYS2 bash command line.

On Windows, see what options for generators you have for CMake, and choose one with [arch] replaced with
Win64:

cmake -help

Then run CMake as follows:
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mkdir build
cd build
cmake .. -G"Visual Studio 14 2015 Win64" -DUSE_CUDA=ON

Note: Visual Studio 2017 Win64 Generator may not work

Choosing the Visual Studio 2017 generator may cause compilation failure. When it happens, specify the 2015 compiler
by adding the -T option:

make .. -G"Visual Studio 15 2017 Win64" -T v140,cuda=8.0 -DR_LIB=ON -DUSE_CUDA=ON

To speed up compilation, the compute version specific to your GPU could be passed to cmake as, e.g.,
-DGPU_COMPUTE_VER=50. The above cmake configuration run will create an xgboost.sln solution file in
the build directory. Build this solution in release mode as a x64 build, either from Visual studio or from command
line:

cmake --build . --target xgboost --config Release

To speed up compilation, run multiple jobs in parallel by appending option -- /MP.

Customized Building

The configuration file config.mk modifies several compilation flags: - Whether to enable support for various dis-
tributed filesystems such as HDFS and Amazon S3 - Which compiler to use - And some more

To customize, first copy make/config.mk to the project root and then modify the copy.

Python Package Installation

The python package is located at python-package/. There are several ways to install the package:

1. Install system-wide, which requires root permission:

cd python-package; sudo python setup.py install

You will however need Python distutils module for this to work. It is often part of the core python package or it
can be installed using your package manager, e.g. in Debian use

sudo apt-get install python-setuptools

Note: Re-compiling XGBoost

If you recompiled XGBoost, then you need to reinstall it again to make the new library take effect.

2. Only set the environment variable PYTHONPATH to tell python where to find the library. For example, assume
we cloned xgboost on the home directory ~. then we can added the following line in ~/.bashrc. This option
is recommended for developers who change the code frequently. The changes will be immediately reflected
once you pulled the code and rebuild the project (no need to call setup again)

export PYTHONPATH=~/xgboost/python-package

3. Install only for the current user.

1.1. Installation Guide 7
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cd python-package; python setup.py develop --user

4. If you are installing the latest XGBoost version which requires compilation, add MinGW to the system PATH:

import os
os.environ['PATH'] = os.environ['PATH'] + ';C:\\Program Files\\mingw-w64\\x86_64-5.3.
→˓0-posix-seh-rt_v4-rev0\\mingw64\\bin'

R Package Installation

Installing pre-packaged version

You can install xgboost from CRAN just like any other R package:

install.packages("xgboost")

Or you can install it from our weekly updated drat repo:

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

For OSX users, single threaded version will be installed. To install multi-threaded version, first follow Building on
OSX to get the OpenMP enabled compiler. Then

• Set the Makevars file in highest piority for R.

The point is, there are three Makevars : ~/.R/Makevars, xgboost/R-package/src/
Makevars, and /usr/local/Cellar/r/3.2.0/R.framework/Resources/etc/Makeconf
(the last one obtained by running file.path(R.home("etc"), "Makeconf") in R), and
SHLIB_OPENMP_CXXFLAGS is not set by default!! After trying, it seems that the first one has highest
piority (surprise!).

Then inside R, run

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

Installing the development version

Make sure you have installed git and a recent C++ compiler supporting C++11 (e.g., g++-4.8 or higher). On Windows,
Rtools must be installed, and its bin directory has to be added to PATH during the installation. And see the previous
subsection for an OSX tip.

Due to the use of git-submodules, devtools::install_github can no longer be used to install the latest version
of R package. Thus, one has to run git to check out the code first:

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
git submodule init
git submodule update
cd R-package
R CMD INSTALL .

8 Chapter 1. Contents
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If the last line fails because of the error R: command not found, it means that R was not set up to run from
command line. In this case, just start R as you would normally do and run the following:

setwd('wherever/you/cloned/it/xgboost/R-package/')
install.packages('.', repos = NULL, type="source")

The package could also be built and installed with cmake (and Visual C++ 2015 on Windows) using instructions from
the next section, but without GPU support (omit the -DUSE_CUDA=ON cmake parameter).

If all fails, try Building the shared library to see whether a problem is specific to R package or not.

Installing R package with GPU support

The procedure and requirements are similar as in Building with GPU support, so make sure to read it first.

On Linux, starting from the XGBoost directory type:

mkdir build
cd build
cmake .. -DUSE_CUDA=ON -DR_LIB=ON
make install -j

When default target is used, an R package shared library would be built in the build area. The install tar-
get, in addition, assembles the package files with this shared library under build/R-package, and runs R CMD
INSTALL.

On Windows, cmake with Visual C++ Build Tools (or Visual Studio) has to be used to build an R package with GPU
support. Rtools must also be installed (perhaps, some other MinGW distributions with gendef.exe and dlltool.
exe would work, but that was not tested).

mkdir build
cd build
cmake .. -G"Visual Studio 14 2015 Win64" -DUSE_CUDA=ON -DR_LIB=ON
cmake --build . --target install --config Release

When --target xgboost is used, an R package dll would be built under build/Release. The --target
install, in addition, assembles the package files with this dll under build/R-package, and runs R CMD
INSTALL.

If cmake can’t find your R during the configuration step, you might provide the location of its executable to cmake
like this: -DLIBR_EXECUTABLE="C:/Program Files/R/R-3.4.1/bin/x64/R.exe".

If on Windows you get a “permission denied” error when trying to write to . . . Program Files/R/. . . during the package
installation, create a .Rprofile file in your personal home directory (if you don’t already have one in there), and
add a line to it which specifies the location of your R packages user library, like the following:

.libPaths( unique(c("C:/Users/USERNAME/Documents/R/win-library/3.4", .libPaths())))

You might find the exact location by running .libPaths() in R GUI or RStudio.

Trouble Shooting

1. Compile failed after git pull

Please first update the submodules, clean all and recompile:

1.1. Installation Guide 9
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git submodule update && make clean_all && make -j4

2. Compile failed after config.mk is modified

Need to clean all first:

make clean_all && make -j4

3. Makefile: dmlc-core/make/dmlc.mk: No such file or directory

We need to recursively clone the submodule:

git submodule init
git submodule update

Alternatively, do another clone

git clone https://github.com/dmlc/xgboost --recursive

1.2 Get Started with XGBoost

This is a quick start tutorial showing snippets for you to quickly try out XGBoost on the demo dataset on a binary
classification task.

1.2.1 Links to Other Helpful Resources

• See Installation Guide on how to install XGBoost.

• See Text Input Format on using text format for specifying training/testing data.

• See Tutorials for tips and tutorials.

• See Learning to use XGBoost by Examples for more code examples.

1.2.2 Python

import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
# make prediction
preds = bst.predict(dtest)

1.2.3 R
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# load data
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
# fit model
bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nround
→˓= 2,

nthread = 2, objective = "binary:logistic")
# predict
pred <- predict(bst, test$data)

1.2.4 Julia

using XGBoost
# read data
train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))
test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))
# fit model
num_round = 2
bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)
# predict
pred = predict(bst, test_X)

1.2.5 Scala

import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost

object XGBoostScalaExample {
def main(args: Array[String]) {
// read trainining data, available at xgboost/demo/data
val trainData =

new DMatrix("/path/to/agaricus.txt.train")
// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap

// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
// run prediction
val predTrain = model.predict(trainData)
// save model to the file.
model.saveModel("/local/path/to/model")

}
}

1.2. Get Started with XGBoost 11
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1.3 XGBoost Tutorials

This section contains official tutorials inside XGBoost package. See Awesome XGBoost for more resources.

1.3.1 Introduction to Boosted Trees

XGBoost stands for “Extreme Gradient Boosting”, where the term “Gradient Boosting” originates from the paper
Greedy Function Approximation: A Gradient Boosting Machine, by Friedman. This is a tutorial on gradient boosted
trees, and most of the content is based on these slides by Tianqi Chen, the original author of XGBoost.

The gradient boosted trees has been around for a while, and there are a lot of materials on the topic. This tutorial
will explain boosted trees in a self-contained and principled way using the elements of supervised learning. We think
this explanation is cleaner, more formal, and motivates the model formulation used in XGBoost.

Elements of Supervised Learning

XGBoost is used for supervised learning problems, where we use the training data (with multiple features) 𝑥𝑖 to predict
a target variable 𝑦𝑖. Before we learn about trees specifically, let us start by reviewing the basic elements in supervised
learning.

Model and Parameters

The model in supervised learning usually refers to the mathematical structure of by which the prediction 𝑦𝑖 is made
from the input 𝑥𝑖. A common example is a linear model, where the prediction is given as 𝑦𝑖 =

∑︀
𝑗 𝜃𝑗𝑥𝑖𝑗 , a linear

combination of weighted input features. The prediction value can have different interpretations, depending on the task,
i.e., regression or classification. For example, it can be logistic transformed to get the probability of positive class in
logistic regression, and it can also be used as a ranking score when we want to rank the outputs.

The parameters are the undetermined part that we need to learn from data. In linear regression problems, the param-
eters are the coefficients 𝜃. Usually we will use 𝜃 to denote the parameters (there are many parameters in a model, our
definition here is sloppy).

Objective Function: Training Loss + Regularization

With judicious choices for 𝑦𝑖, we may express a variety of tasks, such as regression, classification, and ranking. The
task of training the model amounts to finding the best parameters 𝜃 that best fit the training data 𝑥𝑖 and labels 𝑦𝑖. In
order to train the model, we need to define the objective function to measure how well the model fit the training data.

A salient characteristic of objective functions is that they consist two parts: training loss and regularization term:

obj(𝜃) = 𝐿(𝜃) + Ω(𝜃)

where 𝐿 is the training loss function, and Ω is the regularization term. The training loss measures how predictive our
model is with respect to the training data. A common choice of 𝐿 is the mean squared error, which is given by

𝐿(𝜃) =
∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖)
2

Another commonly used loss function is logistic loss, to be used for logistic regression:

𝐿(𝜃) =
∑︁
𝑖

[𝑦𝑖 ln(1 + 𝑒−𝑦𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒𝑦𝑖)]

12 Chapter 1. Contents
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The regularization term is what people usually forget to add. The regularization term controls the complexity of the
model, which helps us to avoid overfitting. This sounds a bit abstract, so let us consider the following problem in the
following picture. You are asked to fit visually a step function given the input data points on the upper left corner of
the image. Which solution among the three do you think is the best fit?

The correct answer is marked in red. Please consider if this visually seems a reasonable fit to you. The general principle
is we want both a simple and predictive model. The tradeoff between the two is also referred as bias-variance tradeoff
in machine learning.

Why introduce the general principle?

The elements introduced above form the basic elements of supervised learning, and they are natural building blocks
of machine learning toolkits. For example, you should be able to describe the differences and commonalities between
gradient boosted trees and random forests. Understanding the process in a formalized way also helps us to understand
the objective that we are learning and the reason behind the heuristics such as pruning and smoothing.

Decision Tree Ensembles

Now that we have introduced the elements of supervised learning, let us get started with real trees. To begin with, let
us first learn about the model choice of XGBoost: decision tree ensembles. The tree ensemble model consists of a
set of classification and regression trees (CART). Here’s a simple example of a CART that classifies whether someone
will like computer games.

1.3. XGBoost Tutorials 13
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We classify the members of a family into different leaves, and assign them the score on the corresponding leaf. A
CART is a bit different from decision trees, in which the leaf only contains decision values. In CART, a real score is
associated with each of the leaves, which gives us richer interpretations that go beyond classification. This also allows
for a pricipled, unified approach to optimization, as we will see in a later part of this tutorial.

Usually, a single tree is not strong enough to be used in practice. What is actually used is the ensemble model, which
sums the prediction of multiple trees together.

Here is an example of a tree ensemble of two trees. The prediction scores of each individual tree are summed up to
get the final score. If you look at the example, an important fact is that the two trees try to complement each other.
Mathematically, we can write our model in the form

𝑦𝑖 =

𝐾∑︁
𝑘=1

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ ℱ

where 𝐾 is the number of trees, 𝑓 is a function in the functional space ℱ , and ℱ is the set of all possible CARTs. The
objective function to be optimized is given by

obj(𝜃) =

𝑛∑︁
𝑖

𝑙(𝑦𝑖, 𝑦𝑖) +

𝐾∑︁
𝑘=1

Ω(𝑓𝑘)

14 Chapter 1. Contents
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Now here comes a trick question: what is the model used in random forests? Tree ensembles! So random forests and
boosted trees are really the same models; the difference arises from how we train them. This means that, if you write
a predictive service for tree ensembles, you only need to write one and it should work for both random forests and
gradient boosted trees. (See Treelite for an actual example.) One example of why elements of supervised learning
rock.

Tree Boosting

Now that we introduced the model, let us turn to training: How should we learn the trees? The answer is, as is always
for all supervised learning models: define an objective function and optimize it!

Let the following be the objective function (remember it always needs to contain training loss and regularization):

obj =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡)
𝑖 ) +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖)

Additive Training

The first question we want to ask: what are the parameters of trees? You can find that what we need to learn are those
functions 𝑓𝑖, each containing the structure of the tree and the leaf scores. Learning tree structure is much harder than
traditional optimization problem where you can simply take the gradient. It is intractable to learn all the trees at once.
Instead, we use an additive strategy: fix what we have learned, and add one new tree at a time. We write the prediction
value at step 𝑡 as 𝑦(𝑡)𝑖 . Then we have

𝑦
(0)
𝑖 = 0

𝑦
(1)
𝑖 = 𝑓1(𝑥𝑖) = 𝑦

(0)
𝑖 + 𝑓1(𝑥𝑖)

𝑦
(2)
𝑖 = 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖) = 𝑦

(1)
𝑖 + 𝑓2(𝑥𝑖)

. . .

𝑦
(𝑡)
𝑖 =

𝑡∑︁
𝑘=1

𝑓𝑘(𝑥𝑖) = 𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)

It remains to ask: which tree do we want at each step? A natural thing is to add the one that optimizes our objective.

obj(𝑡) =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡)
𝑖 ) +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖)

=
𝑛∑︁

𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + constant

If we consider using mean squared error (MSE) as our loss function, the objective becomes

obj(𝑡) =

𝑛∑︁
𝑖=1

(𝑦𝑖 − (𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)))

2 +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖)

=

𝑛∑︁
𝑖=1

[2(𝑦
(𝑡−1)
𝑖 − 𝑦𝑖)𝑓𝑡(𝑥𝑖) + 𝑓𝑡(𝑥𝑖)

2] + Ω(𝑓𝑡) + constant

The form of MSE is friendly, with a first order term (usually called the residual) and a quadratic term. For other losses
of interest (for example, logistic loss), it is not so easy to get such a nice form. So in the general case, we take the
Taylor expansion of the loss function up to the second order:

obj(𝑡) =

𝑛∑︁
𝑖=1

[𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 ) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓

2
𝑡 (𝑥𝑖)] + Ω(𝑓𝑡) + constant
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where the 𝑔𝑖 and ℎ𝑖 are defined as

𝑔𝑖 = 𝜕
𝑦
(𝑡−1)
𝑖

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 )

ℎ𝑖 = 𝜕2

𝑦
(𝑡−1)
𝑖

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 )

After we remove all the constants, the specific objective at step 𝑡 becomes

𝑛∑︁
𝑖=1

[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓

2
𝑡 (𝑥𝑖)] + Ω(𝑓𝑡)

This becomes our optimization goal for the new tree. One important advantage of this definition is that the value of the
objective function only depends on 𝑔𝑖 and ℎ𝑖. This is how XGBoost supports custom loss functions. We can optimize
every loss function, including logistic regression and pairwise ranking, using exactly the same solver that takes 𝑔𝑖 and
ℎ𝑖 as input!

Model Complexity

We have introduced the training step, but wait, there is one important thing, the regularization term! We need to
define the complexity of the tree Ω(𝑓). In order to do so, let us first refine the definition of the tree 𝑓(𝑥) as

𝑓𝑡(𝑥) = 𝑤𝑞(𝑥), 𝑤 ∈ 𝑅𝑇 , 𝑞 : 𝑅𝑑 → {1, 2, · · · , 𝑇}.

Here 𝑤 is the vector of scores on leaves, 𝑞 is a function assigning each data point to the corresponding leaf, and 𝑇 is
the number of leaves. In XGBoost, we define the complexity as

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤2
𝑗

Of course, there is more than one way to define the complexity, but this one works well in practice. The regularization
is one part most tree packages treat less carefully, or simply ignore. This was because the traditional treatment of
tree learning only emphasized improving impurity, while the complexity control was left to heuristics. By defining it
formally, we can get a better idea of what we are learning and obtain models that perform well in the wild.

The Structure Score

Here is the magical part of the derivation. After re-formulating the tree model, we can write the objective value with
the 𝑡-th tree as:

obj(𝑡) ≈
𝑛∑︁

𝑖=1

[𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤

2
𝑞(𝑥𝑖)

] + 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤2
𝑗

=

𝑇∑︁
𝑗=1

[(
∑︁
𝑖∈𝐼𝑗

𝑔𝑖)𝑤𝑗 +
1

2
(
∑︁
𝑖∈𝐼𝑗

ℎ𝑖 + 𝜆)𝑤2
𝑗 ] + 𝛾𝑇

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is the set of indices of data points assigned to the 𝑗-th leaf. Notice that in the second line
we have changed the index of the summation because all the data points on the same leaf get the same score. We could
further compress the expression by defining 𝐺𝑗 =

∑︀
𝑖∈𝐼𝑗

𝑔𝑖 and 𝐻𝑗 =
∑︀

𝑖∈𝐼𝑗
ℎ𝑖:

obj(𝑡) =

𝑇∑︁
𝑗=1

[𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤2

𝑗 ] + 𝛾𝑇
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In this equation, 𝑤𝑗 are independent with respect to each other, the form 𝐺𝑗𝑤𝑗 + 1
2 (𝐻𝑗 + 𝜆)𝑤2

𝑗 is quadratic and the
best 𝑤𝑗 for a given structure 𝑞(𝑥) and the best objective reduction we can get is:

𝑤*
𝑗 = − 𝐺𝑗

𝐻𝑗 + 𝜆

obj* = −1

2

𝑇∑︁
𝑗=1

𝐺2
𝑗

𝐻𝑗 + 𝜆
+ 𝛾𝑇

The last equation measures how good a tree structure 𝑞(𝑥) is.

If all this sounds a bit complicated, let’s take a look at the picture, and see how the scores can be calculated. Basically,
for a given tree structure, we push the statistics 𝑔𝑖 and ℎ𝑖 to the leaves they belong to, sum the statistics together, and
use the formula to calculate how good the tree is. This score is like the impurity measure in a decision tree, except that
it also takes the model complexity into account.

Learn the tree structure

Now that we have a way to measure how good a tree is, ideally we would enumerate all possible trees and pick the
best one. In practice this is intractable, so we will try to optimize one level of the tree at a time. Specifically we try to
split a leaf into two leaves, and the score it gains is

𝐺𝑎𝑖𝑛 =
1

2

[︂
𝐺2

𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
− (𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆

]︂
− 𝛾

This formula can be decomposed as 1) the score on the new left leaf 2) the score on the new right leaf 3) The score on
the original leaf 4) regularization on the additional leaf. We can see an important fact here: if the gain is smaller than
𝛾, we would do better not to add that branch. This is exactly the pruning techniques in tree based models! By using
the principles of supervised learning, we can naturally come up with the reason these techniques work :)

For real valued data, we usually want to search for an optimal split. To efficiently do so, we place all the instances in
sorted order, like the following picture.
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A left to right scan is sufficient to calculate the structure score of all possible split solutions, and we can find the best
split efficiently.

Final words on XGBoost

Now that you understand what boosted trees are, you may ask, where is the introduction for XGBoost? XGBoost is
exactly a tool motivated by the formal principle introduced in this tutorial! More importantly, it is developed with both
deep consideration in terms of systems optimization and principles in machine learning. The goal of this library
is to push the extreme of the computation limits of machines to provide a scalable, portable and accurate library.
Make sure you try it out, and most importantly, contribute your piece of wisdom (code, examples, tutorials) to the
community!

1.3.2 Distributed XGBoost YARN on AWS

This is a step-by-step tutorial on how to setup and run distributed XGBoost on an AWS EC2 cluster. Distributed
XGBoost runs on various platforms such as MPI, SGE and Hadoop YARN. In this tutorial, we use YARN as an
example since this is a widely used solution for distributed computing.

Note: XGBoost on Spark

If you are preprocessing training data with Spark, you may want to look at XGBoost4J-Spark, which supports dis-
tributed training on Resilient Distributed Dataset (RDD).

Prerequisite

We need to get a AWS key-pair to access the AWS services. Let us assume that we are using a key mykey and the
corresponding permission file mypem.pem.

We also need AWS credentials, which includes an ACCESS_KEY_ID and a SECRET_ACCESS_KEY.

Finally, we will need a S3 bucket to host the data and the model, s3://mybucket/

Setup a Hadoop YARN Cluster

This sections shows how to start a Hadoop YARN cluster from scratch. You can skip this step if you have already have
one. We will be using yarn-ec2 to start the cluster.

We can first clone the yarn-ec2 script by the following command.
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git clone https://github.com/tqchen/yarn-ec2

To use the script, we must set the environment variables AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY
properly. This can be done by adding the following two lines in ~/.bashrc (replacing the strings with the correct
ones)

export AWS_ACCESS_KEY_ID=[your access ID]
export AWS_SECRET_ACCESS_KEY=[your secret access key]

Now we can launch a master machine of the cluster from EC2:

./yarn-ec2 -k mykey -i mypem.pem launch xgboost

Wait a few mininutes till the master machine gets up.

After the master machine gets up, we can query the public DNS of the master machine using the following command.

./yarn-ec2 -k mykey -i mypem.pem get-master xgboost

It will show the public DNS of the master machine like ec2-xx-xx-xx.us-west-2.compute.amazonaws.
com Now we can open the browser, and type (replace the DNS with the master DNS)

ec2-xx-xx-xx.us-west-2.compute.amazonaws.com:8088

This will show the job tracker of the YARN cluster. Note that we may have to wait a few minutes before the master
finishes bootstrapping and starts the job tracker.

After the master machine gets up, we can freely add more slave machines to the cluster. The following command add
m3.xlarge instances to the cluster.

./yarn-ec2 -k mykey -i mypem.pem -t m3.xlarge -s 2 addslave xgboost

We can also choose to add two spot instances

./yarn-ec2 -k mykey -i mypem.pem -t m3.xlarge -s 2 addspot xgboost

The slave machines will start up, bootstrap and report to the master. You can check if the slave machines are connected
by clicking on the Nodes link on the job tracker. Or simply type the following URL (replace DNS ith the master DNS)

ec2-xx-xx-xx.us-west-2.compute.amazonaws.com:8088/cluster/nodes

One thing we should note is that not all the links in the job tracker work. This is due to that many of them use the
private IP of AWS, which can only be accessed by EC2. We can use ssh proxy to access these packages. Now that we
have set up a cluster with one master and two slaves, we are ready to run the experiment.

Build XGBoost with S3

We can log into the master machine by the following command.

./yarn-ec2 -k mykey -i mypem.pem login xgboost

We will be using S3 to host the data and the result model, so the data won’t get lost after the cluster shutdown. To do
so, we will need to build XGBoost with S3 support. The only thing we need to do is to set USE_S3 variable to be
true. This can be achieved by the following command.
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git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
cp make/config.mk config.mk
echo "USE_S3=1" >> config.mk
make -j4

Now we have built the XGBoost with S3 support. You can also enable HDFS support if you plan to store data on
HDFS by turning on USE_HDFS option. XGBoost also relies on the environment variable to access S3, so you will
need to add the following two lines to ~/.bashrc (replacing the strings with the correct ones) on the master machine
as well.

export AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
export BUCKET=mybucket

Host the Data on S3

In this example, we will copy the example dataset in XGBoost to the S3 bucket as input. In normal usecases, the dataset
is usually created from existing distributed processing pipeline. We can use s3cmd to copy the data into mybucket
(replace ${BUCKET} with the real bucket name).

cd xgboost
s3cmd put demo/data/agaricus.txt.train s3://${BUCKET}/xgb-demo/train/
s3cmd put demo/data/agaricus.txt.test s3://${BUCKET}/xgb-demo/test/

Submit the Jobs

Now everything is ready, we can submit the XGBoost distributed job to the YARN cluster. We will use the dmlc-submit
script to submit the job.

Now we can run the following script in the distributed training folder (replace ${BUCKET} with the real bucket name)

cd xgboost/demo/distributed-training
# Use dmlc-submit to submit the job.
../../dmlc-core/tracker/dmlc-submit --cluster=yarn --num-workers=2 --worker-cores=2\

../../xgboost mushroom.aws.conf nthread=2\
data=s3://${BUCKET}/xgb-demo/train\
eval[test]=s3://${BUCKET}/xgb-demo/test\
model_dir=s3://${BUCKET}/xgb-demo/model

All the configurations such as data and model_dir can also be directly written into the configuration file. Note
that we only specified the folder path to the file, instead of the file name. XGBoost will read in all the files in that
folder as the training and evaluation data.

In this command, we are using two workers, and each worker uses two running threads. XGBoost can benefit from
using multiple cores in each worker. A common choice of working cores can range from 4 to 8. The trained model
will be saved into the specified model folder. You can browse the model folder.

s3cmd ls s3://${BUCKET}/xgb-demo/model/

The following is an example output from distributed training.
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16/02/26 05:41:59 INFO dmlc.Client: jobname=DMLC[nworker=2]:xgboost,username=ubuntu
16/02/26 05:41:59 INFO dmlc.Client: Submitting application application_1456461717456_
→˓0015
16/02/26 05:41:59 INFO impl.YarnClientImpl: Submitted application application_
→˓1456461717456_0015
2016-02-26 05:42:05,230 INFO @tracker All of 2 nodes getting started
2016-02-26 05:42:14,027 INFO [05:42:14] [0] test-error:0.016139 train-error:0.
→˓014433
2016-02-26 05:42:14,186 INFO [05:42:14] [1] test-error:0.000000 train-error:0.
→˓001228
2016-02-26 05:42:14,947 INFO @tracker All nodes finishes job
2016-02-26 05:42:14,948 INFO @tracker 9.71754479408 secs between node start and job
→˓finish
Application application_1456461717456_0015 finished with state FINISHED at
→˓1456465335961

Analyze the Model

After the model is trained, we can analyse the learnt model and use it for future prediction tasks. XGBoost is a
portable framework, meaning the models in all platforms are exchangeable. This means we can load the trained model
in python/R/Julia and take benefit of data science pipelines in these languages to do model analysis and prediction.

For example, you can use this IPython notebook to plot feature importance and visualize the learnt model.

Troubleshooting

If you encounter a problem, the best way might be to use the following command to get logs of stdout and stderr of
the containers and check what causes the problem.

yarn logs -applicationId yourAppId

Future Directions

You have learned to use distributed XGBoost on YARN in this tutorial. XGBoost is a portable and scalable framework
for gradient boosting. You can check out more examples and resources in the resources page.

The project goal is to make the best scalable machine learning solution available to all platforms. The API is designed
to be able to portable, and the same code can also run on other platforms such as MPI and SGE. XGBoost is actively
evolving and we are working on even more exciting features such as distributed XGBoost python/R package.

1.3.3 DART booster

XGBoost mostly combines a huge number of regression trees with a small learning rate. In this situation, trees added
early are significant and trees added late are unimportant.

Vinayak and Gilad-Bachrach proposed a new method to add dropout techniques from the deep neural net community
to boosted trees, and reported better results in some situations.

This is a instruction of new tree booster dart.

Original paper

Rashmi Korlakai Vinayak, Ran Gilad-Bachrach. “DART: Dropouts meet Multiple Additive Regression Trees.” JMLR.
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Features

• Drop trees in order to solve the over-fitting.

– Trivial trees (to correct trivial errors) may be prevented.

Because of the randomness introduced in the training, expect the following few differences:

• Training can be slower than gbtree because the random dropout prevents usage of the prediction buffer.

• The early stop might not be stable, due to the randomness.

How it works

• In 𝑚-th training round, suppose 𝑘 trees are selected to be dropped.

• Let 𝐷 =
∑︀

𝑖∈K 𝐹𝑖 be the leaf scores of dropped trees and 𝐹𝑚 = 𝜂𝐹𝑚 be the leaf scores of a new tree.

• The objective function is as follows:

Obj =

𝑛∑︁
𝑗=1

𝐿
(︁
𝑦𝑗 , 𝑦

𝑚−1
𝑗 −𝐷𝑗 + 𝐹𝑚

)︁
+ Ω

(︁
𝐹𝑚

)︁
.

• 𝐷 and 𝐹𝑚 are overshooting, so using scale factor

𝑦𝑚𝑗 =
∑︁
𝑖 ̸∈K

𝐹𝑖 + 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝑏𝐹𝑚

)︃
.

Parameters

The booster dart inherits gbtree booster, so it supports all parameters that gbtree does, such as eta, gamma,
max_depth etc.

Additional parameters are noted below:

• sample_type: type of sampling algorithm.

– uniform: (default) dropped trees are selected uniformly.

– weighted: dropped trees are selected in proportion to weight.

• normalize_type: type of normalization algorithm.

– tree: (default) New trees have the same weight of each of dropped trees.

𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 +
1

𝑘
𝐹𝑚

)︃
= 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 +
𝜂

𝑘
𝐹𝑚

)︃
∼ 𝑎

(︁
1 +

𝜂

𝑘

)︁
𝐷

= 𝑎
𝑘 + 𝜂

𝑘
𝐷 = 𝐷,

𝑎 =
𝑘

𝑘 + 𝜂

– forest: New trees have the same weight of sum of dropped trees (forest).
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𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝐹𝑚

)︃
= 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝜂𝐹𝑚

)︃
∼ 𝑎 (1 + 𝜂)𝐷

= 𝑎(1 + 𝜂)𝐷 = 𝐷,

𝑎 =
1

1 + 𝜂
.

• rate_drop: dropout rate.

– range: [0.0, 1.0]

• skip_drop: probability of skipping dropout.

– If a dropout is skipped, new trees are added in the same manner as gbtree.

– range: [0.0, 1.0]

Sample Script

import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'booster': 'dart',

'max_depth': 5, 'learning_rate': 0.1,
'objective': 'binary:logistic', 'silent': True,
'sample_type': 'uniform',
'normalize_type': 'tree',
'rate_drop': 0.1,
'skip_drop': 0.5}

num_round = 50
bst = xgb.train(param, dtrain, num_round)
# make prediction
# ntree_limit must not be 0
preds = bst.predict(dtest, ntree_limit=num_round)

1.3.4 Monotonic Constraints

It is often the case in a modeling problem or project that the functional form of an acceptable model is constrained
in some way. This may happen due to business considerations, or because of the type of scientific question being
investigated. In some cases, where there is a very strong prior belief that the true relationship has some quality,
constraints can be used to improve the predictive performance of the model.

A common type of constraint in this situation is that certain features bear a monotonic relationship to the predicted
response:

𝑓(𝑥1, 𝑥2, . . . , 𝑥, . . . , 𝑥𝑛−1, 𝑥𝑛) ≤ 𝑓(𝑥1, 𝑥2, . . . , 𝑥
′, . . . , 𝑥𝑛−1, 𝑥𝑛)

whenever 𝑥 ≤ 𝑥′ is an increasing constraint; or

𝑓(𝑥1, 𝑥2, . . . , 𝑥, . . . , 𝑥𝑛−1, 𝑥𝑛) ≥ 𝑓(𝑥1, 𝑥2, . . . , 𝑥
′, . . . , 𝑥𝑛−1, 𝑥𝑛)

whenever 𝑥 ≤ 𝑥′ is a decreasing constraint.

XGBoost has the ability to enforce monotonicity constraints on any features used in a boosted model.
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A Simple Example

To illustrate, let’s create some simulated data with two features and a response according to the following scheme

𝑦 = 5𝑥1 + sin(10𝜋𝑥1) − 5𝑥2 − cos(10𝜋𝑥2) + 𝑁(0, 0.01)𝑥1, 𝑥2 ∈ [0, 1]

The response generally increases with respect to the 𝑥1 feature, but a sinusoidal variation has been superimposed,
resulting in the true effect being non-monotonic. For the 𝑥2 feature the variation is decreasing with a sinusoidal
variation.

Let’s fit a boosted tree model to this data without imposing any monotonic constraints:

The black curve shows the trend inferred from the model for each feature. To make these plots the distinguished
feature 𝑥𝑖 is fed to the model over a one-dimensional grid of values, while all the other features (in this case only one
other feature) are set to their average values. We see that the model does a good job of capturing the general trend with
the oscillatory wave superimposed.

Here is the same model, but fit with monotonicity constraints:
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We see the effect of the constraint. For each variable the general direction of the trend is still evident, but the oscillatory
behaviour no longer remains as it would violate our imposed constraints.

Enforcing Monotonic Constraints in XGBoost

It is very simple to enforce monotonicity constraints in XGBoost. Here we will give an example using Python, but the
same general idea generalizes to other platforms.

Suppose the following code fits your model without monotonicity constraints

model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

Then fitting with monotonicity constraints only requires adding a single parameter

params_constrained = params.copy()
params_constrained['monotone_constraints'] = "(1,-1)"

model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

In this example the training data X has two columns, and by using the parameter values (1,-1) we are telling
XGBoost to impose an increasing constraint on the first predictor and a decreasing constraint on the second.

Some other examples:

• (1,0): An increasing constraint on the first predictor and no constraint on the second.

• (0,-1): No constraint on the first predictor and a decreasing constraint on the second.

Choise of tree construction algorithm. To use monotonic constraints, be sure to set the tree_method parameter
to one of exact, hist, and gpu_hist.

Note for the ‘hist’ tree construction algorithm. If tree_method is set to either hist or gpu_hist, enabling
monotonic constraints may produce unnecessarily shallow trees. This is because the histmethod reduces the number
of candidate splits to be considered at each split. Monotonic constraints may wipe out all available split candidates, in
which case no split is made. To reduce the effect, you may want to increase the max_bin parameter to consider more
split candidates.
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1.3.5 Text Input Format of DMatrix

Basic Input Format

XGBoost currently supports two text formats for ingesting data: LibSVM and CSV. The rest of this document will
describe the LibSVM format. (See this Wikipedia article for a description of the CSV format.)

For training or predicting, XGBoost takes an instance file with the format as below:

Listing 1: train.txt

1 101:1.2 102:0.03
0 1:2.1 10001:300 10002:400
0 0:1.3 1:0.3
1 0:0.01 1:0.3
0 0:0.2 1:0.3

Each line represent a single instance, and in the first line ‘1’ is the instance label, ‘101’ and ‘102’ are feature indices,
‘1.2’ and ‘0.03’ are feature values. In the binary classification case, ‘1’ is used to indicate positive samples, and ‘0’ is
used to indicate negative samples. We also support probability values in [0,1] as label, to indicate the probability of
the instance being positive.

Auxiliary Files for Additional Information

Note: all information below is applicable only to single-node version of the package. If you’d like to perform
distributed training with multiple nodes, skip to the section Embedding additional information inside LibSVM file.

Group Input Format

For ranking task, XGBoost supports the group input format. In ranking task, instances are categorized into query
groups in real world scenarios. For example, in the learning to rank web pages scenario, the web page instances are
grouped by their queries. XGBoost requires an file that indicates the group information. For example, if the instance
file is the train.txt shown above, the group file should be named train.txt.group and be of the following
format:

Listing 2: train.txt.group

2
3

This means that, the data set contains 5 instances, and the first two instances are in a group and the other three are
in another group. The numbers in the group file are actually indicating the number of instances in each group in the
instance file in order. At the time of configuration, you do not have to indicate the path of the group file. If the instance
file name is xxx, XGBoost will check whether there is a file named xxx.group in the same directory.

Instance Weight File

Instances in the training data may be assigned weights to differentiate relative importance among them. For example,
if we provide an instance weight file for the train.txt file in the example as below:
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Listing 3: train.txt.weight

1
0.5
0.5
1
0.5

It means that XGBoost will emphasize more on the first and fourth instance (i.e. the positive instances) while training.
The configuration is similar to configuring the group information. If the instance file name is xxx, XGBoost will look
for a file named xxx.weight in the same directory. If the file exists, the instance weights will be extracted and used
at the time of training.

Note: Binary buffer format and instance weights

If you choose to save the training data as a binary buffer (using save_binary()), keep in mind that the resulting
binary buffer file will include the instance weights. To update the weights, use the set_weight() function.

Initial Margin File

XGBoost supports providing each instance an initial margin prediction. For example, if we have a initial prediction
using logistic regression for train.txt file, we can create the following file:

Listing 4: train.txt.base_margin

-0.4
1.0
3.4

XGBoost will take these values as initial margin prediction and boost from that. An important note about base_margin
is that it should be margin prediction before transformation, so if you are doing logistic loss, you will need to put in
value before logistic transformation. If you are using XGBoost predictor, use pred_margin=1 to output margin
values.

Embedding additional information inside LibSVM file

This section is applicable to both single- and multiple-node settings.

Query ID Columns

This is most useful for ranking task, where the instances are grouped into query groups. You may embed query group
ID for each instance in the LibSVM file by adding a token of form qid:xx in each row:

Listing 5: train.txt

1 qid:1 101:1.2 102:0.03
0 qid:1 1:2.1 10001:300 10002:400
0 qid:2 0:1.3 1:0.3
1 qid:2 0:0.01 1:0.3
0 qid:3 0:0.2 1:0.3

(continues on next page)
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(continued from previous page)

1 qid:3 3:-0.1 10:-0.3
0 qid:3 6:0.2 10:0.15

Keep in mind the following restrictions:

• You are not allowed to specify query ID’s for some instances but not for others. Either every row is assigned
query ID’s or none at all.

• The rows have to be sorted in ascending order by the query IDs. So, for instance, you may not have one row
having large query ID than any of the following rows.

Instance weights

You may specify instance weights in the LibSVM file by appending each instance label with the corresponding weight
in the form of [label]:[weight], as shown by the following example:

Listing 6: train.txt

1:1.0 101:1.2 102:0.03
0:0.5 1:2.1 10001:300 10002:400
0:0.5 0:1.3 1:0.3
1:1.0 0:0.01 1:0.3
0:0.5 0:0.2 1:0.3

where the negative instances are assigned half weights compared to the positive instances.

1.3.6 Notes on Parameter Tuning

Parameter tuning is a dark art in machine learning, the optimal parameters of a model can depend on many scenarios.
So it is impossible to create a comprehensive guide for doing so.

This document tries to provide some guideline for parameters in XGBoost.

Understanding Bias-Variance Tradeoff

If you take a machine learning or statistics course, this is likely to be one of the most important concepts. When
we allow the model to get more complicated (e.g. more depth), the model has better ability to fit the training data,
resulting in a less biased model. However, such complicated model requires more data to fit.

Most of parameters in XGBoost are about bias variance tradeoff. The best model should trade the model complexity
with its predictive power carefully. Parameters Documentation will tell you whether each parameter will make the
model more conservative or not. This can be used to help you turn the knob between complicated model and simple
model.

Control Overfitting

When you observe high training accuracy, but low test accuracy, it is likely that you encountered overfitting problem.

There are in general two ways that you can control overfitting in XGBoost:

• The first way is to directly control model complexity.

– This includes max_depth, min_child_weight and gamma.
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• The second way is to add randomness to make training robust to noise.

– This includes subsample and colsample_bytree.

– You can also reduce stepsize eta. Remember to increase num_round when you do so.

Handle Imbalanced Dataset

For common cases such as ads clickthrough log, the dataset is extremely imbalanced. This can affect the training of
XGBoost model, and there are two ways to improve it.

• If you care only about the overall performance metric (AUC) of your prediction

– Balance the positive and negative weights via scale_pos_weight

– Use AUC for evaluation

• If you care about predicting the right probability

– In such a case, you cannot re-balance the dataset

– Set parameter max_delta_step to a finite number (say 1) to help convergence

1.3.7 Using XGBoost External Memory Version (beta)

There is no big difference between using external memory version and in-memory version. The only difference is the
filename format.

The external memory version takes in the following filename format:

filename#cacheprefix

The filename is the normal path to libsvm file you want to load in, and cacheprefix is a path to a cache file that
XGBoost will use for external memory cache.

Note: External memory is not available with GPU algorithms

External memory is not available when tree_method is set to gpu_exact or gpu_hist.

The following code was extracted from demo/guide-python/external_memory.py:

dtrain = xgb.DMatrix('../data/agaricus.txt.train#dtrain.cache')

You can find that there is additional #dtrain.cache following the libsvm file, this is the name of cache file. For
CLI version, simply add the cache suffix, e.g. "../data/agaricus.txt.train#dtrain.cache".

Performance Note

• the parameter nthread should be set to number of physical cores

– Most modern CPUs use hyperthreading, which means a 4 core CPU may carry 8 threads

– Set nthread to be 4 for maximum performance in such case
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Distributed Version

The external memory mode naturally works on distributed version, you can simply set path like

data = "hdfs://path-to-data/#dtrain.cache"

XGBoost will cache the data to the local position. When you run on YARN, the current folder is temporal so that you
can directly use dtrain.cache to cache to current folder.

Usage Note

• This is a experimental version

• Currently only importing from libsvm format is supported

– Contribution of ingestion from other common external memory data source is welcomed

1.4 Frequently Asked Questions

This document contains frequently asked questions about XGBoost.

1.4.1 How to tune parameters

See Parameter Tuning Guide.

1.4.2 Description on the model

See Introduction to Boosted Trees.

1.4.3 I have a big dataset

XGBoost is designed to be memory efficient. Usually it can handle problems as long as the data fit into your memory.
(This usually means millions of instances) If you are running out of memory, checkout external memory version or
distributed version of XGBoost.

1.4.4 Running XGBoost on Platform X (Hadoop/Yarn, Mesos)

The distributed version of XGBoost is designed to be portable to various environment. Distributed XGBoost can be
ported to any platform that supports rabit. You can directly run XGBoost on Yarn. In theory Mesos and other resource
allocation engines can be easily supported as well.

1.4.5 Why not implement distributed XGBoost on top of X (Spark, Hadoop)

The first fact we need to know is going distributed does not necessarily solve all the problems. Instead, it creates more
problems such as more communication overhead and fault tolerance. The ultimate question will still come back to how
to push the limit of each computation node and use less resources to complete the task (thus with less communication
and chance of failure).
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To achieve these, we decide to reuse the optimizations in the single node XGBoost and build distributed version on
top of it. The demand of communication in machine learning is rather simple, in the sense that we can depend on a
limited set of API (in our case rabit). Such design allows us to reuse most of the code, while being portable to major
platforms such as Hadoop/Yarn, MPI, SGE. Most importantly, it pushes the limit of the computation resources we can
use.

1.4.6 How can I port the model to my own system

The model and data format of XGBoost is exchangeable, which means the model trained by one language can be
loaded in another. This means you can train the model using R, while running prediction using Java or C++, which are
more common in production systems. You can also train the model using distributed versions, and load them in from
Python to do some interactive analysis.

1.4.7 Do you support LambdaMART

Yes, XGBoost implements LambdaMART. Checkout the objective section in parameters.

1.4.8 How to deal with Missing Value

XGBoost supports missing value by default. In tree algorithms, branch directions for missing values are learned during
training. Note that the gblinear booster treats missing values as zeros.

1.4.9 Slightly different result between runs

This could happen, due to non-determinism in floating point summation order and multi-threading. Though the general
accuracy will usually remain the same.

1.4.10 Why do I see different results with sparse and dense data?

“Sparse” elements are treated as if they were “missing” by the tree booster, and as zeros by the linear booster. For tree
models, it is important to use consistent data formats during training and scoring.

1.5 XGBoost GPU Support

This page contains information about GPU algorithms supported in XGBoost. To install GPU support, checkout the
Installation Guide.

Note: CUDA 8.0, Compute Capability 3.5 required

The GPU algorithms in XGBoost require a graphics card with compute capability 3.5 or higher, with CUDA toolkits
8.0 or later. (See this list to look up compute capability of your GPU card.)

1.5.1 CUDA Accelerated Tree Construction Algorithms

This plugin adds GPU accelerated tree construction and prediction algorithms to XGBoost.
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Usage

Specify the tree_method parameter as one of the following algorithms.

Algorithms

tree_methodDescription
gpu_exact The standard XGBoost tree construction algorithm. Performs exact search for splits. Slower and uses

considerably more memory than gpu_hist.
gpu_hist Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory.

NOTE: Will run very slowly on GPUs older than Pascal architecture.

Supported parameters

parameter gpu_exact gpu_hist
subsample
colsample_bytree
colsample_bylevel
max_bin
gpu_id
n_gpus
predictor
grow_policy
monotone_constraints

GPU accelerated prediction is enabled by default for the above mentioned tree_method parameters but can be
switched to CPU prediction by setting predictor to cpu_predictor. This could be useful if you want to
conserve GPU memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting
predictor to gpu_predictor.

The device ordinal can be selected using the gpu_id parameter, which defaults to 0.

Multiple GPUs can be used with the gpu_hist tree method using the n_gpus parameter. which defaults to 1. If this
is set to -1 all available GPUs will be used. If gpu_id is specified as non-zero, the gpu device order is mod(gpu_id
+ i) % n_visible_devices for i=0 to n_gpus-1. As with GPU vs. CPU, multi-GPU will not always be
faster than a single GPU due to PCI bus bandwidth that can limit performance.

This plugin currently works with the CLI, python and R - see Installation Guide for details.

Listing 7: Python example

param['gpu_id'] = 0
param['max_bin'] = 16
param['tree_method'] = 'gpu_hist'

Benchmarks

You can run benchmarks on synthetic data for binary classification:

python tests/benchmark/benchmark.py
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Training time time on 1,000,000 rows x 50 columns with 500 boosting iterations and 0.25/0.75 test/train split on
i7-6700K CPU @ 4.00GHz and Pascal Titan X yields the following results:

tree_method Time (s)
gpu_hist 13.87
hist 63.55
gpu_exact 161.08
exact 1082.20

See GPU Accelerated XGBoost and Updates to the XGBoost GPU algorithms for additional performance benchmarks
of the gpu_exact and gpu_hist tree methods.

1.5.2 References

Mitchell R, Frank E. (2017) Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science
3:e127 https://doi.org/10.7717/peerj-cs.127

Nvidia Parallel Forall: Gradient Boosting, Decision Trees and XGBoost with CUDA

Authors

• Rory Mitchell

• Jonathan C. McKinney

• Shankara Rao Thejaswi Nanditale

• Vinay Deshpande

• . . . and the rest of the H2O.ai and NVIDIA team.

Please report bugs to the user forum https://discuss.xgboost.ai/.

1.6 XGBoost Parameters

Before running XGBoost, we must set three types of parameters: general parameters, booster parameters and task
parameters.

• General parameters relate to which booster we are using to do boosting, commonly tree or linear model

• Booster parameters depend on which booster you have chosen

• Learning task parameters decide on the learning scenario. For example, regression tasks may use different
parameters with ranking tasks.

• Command line parameters relate to behavior of CLI version of XGBoost.

Note: Parameters in R package

In R-package, you can use . (dot) to replace underscore in the parameters, for example, you can use max.depth to
indicate max_depth. The underscore parameters are also valid in R.
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1.6.1 General Parameters

• booster [default= gbtree ]

– Which booster to use. Can be gbtree, gblinear or dart; gbtree and dart use tree based models
while gblinear uses linear functions.

• silent [default=0]

– 0 means printing running messages, 1 means silent mode

• nthread [default to maximum number of threads available if not set]

– Number of parallel threads used to run XGBoost

• num_pbuffer [set automatically by XGBoost, no need to be set by user]

– Size of prediction buffer, normally set to number of training instances. The buffers are used to save the
prediction results of last boosting step.

• num_feature [set automatically by XGBoost, no need to be set by user]

– Feature dimension used in boosting, set to maximum dimension of the feature

Parameters for Tree Booster

• eta [default=0.3, alias: learning_rate]

– Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get
the weights of new features, and eta shrinks the feature weights to make the boosting process more
conservative.

– range: [0,1]

• gamma [default=0, alias: min_split_loss]

– Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma
is, the more conservative the algorithm will be.

– range: [0,∞]

• max_depth [default=6]

– Maximum depth of a tree. Increasing this value will make the model more complex and more likely to
overfit. 0 indicates no limit. Note that limit is required when grow_policy is set of depthwise.

– range: [0,∞]

• min_child_weight [default=1]

– Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node
with the sum of instance weight less than min_child_weight, then the building process will give up
further partitioning. In linear regression task, this simply corresponds to minimum number of instances
needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will
be.

– range: [0,∞]

• max_delta_step [default=0]

– Maximum delta step we allow each leaf output to be. If the value is set to 0, it means there is no constraint.
If it is set to a positive value, it can help making the update step more conservative. Usually this parameter
is not needed, but it might help in logistic regression when class is extremely imbalanced. Set it to value
of 1-10 might help control the update.
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– range: [0,∞]

• subsample [default=1]

– Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample
half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur
once in every boosting iteration.

– range: (0,1]

• colsample_bytree [default=1]

– Subsample ratio of columns when constructing each tree. Subsampling will occur once in every boosting
iteration.

– range: (0,1]

• colsample_bylevel [default=1]

– Subsample ratio of columns for each split, in each level. Subsampling will occur each time a new split is
made. This paramter has no effect when tree_method is set to hist.

– range: (0,1]

• lambda [default=1, alias: reg_lambda]

– L2 regularization term on weights. Increasing this value will make model more conservative.

• alpha [default=0, alias: reg_alpha]

– L1 regularization term on weights. Increasing this value will make model more conservative.

• tree_method string [default= auto]

– The tree construction algorithm used in XGBoost. See description in the reference paper.

– Distributed and external memory version only support tree_method=approx.

– Choices: auto, exact, approx, hist, gpu_exact, gpu_hist

* auto: Use heuristic to choose the fastest method.

· For small to medium dataset, exact greedy (exact) will be used.

· For very large dataset, approximate algorithm (approx) will be chosen.

· Because old behavior is always use exact greedy in single machine, user will get a message when
approximate algorithm is chosen to notify this choice.

* exact: Exact greedy algorithm.

* approx: Approximate greedy algorithm using quantile sketch and gradient histogram.

* hist: Fast histogram optimized approximate greedy algorithm. It uses some performance improve-
ments such as bins caching.

* gpu_exact: GPU implementation of exact algorithm.

* gpu_hist: GPU implementation of hist algorithm.

• sketch_eps [default=0.03]

– Only used for tree_method=approx.

– This roughly translates into O(1 / sketch_eps) number of bins. Compared to directly select number
of bins, this comes with theoretical guarantee with sketch accuracy.

– Usually user does not have to tune this. But consider setting to a lower number for more accurate enumer-
ation of split candidates.
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– range: (0, 1)

• scale_pos_weight [default=1]

– Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to con-
sider: sum(negative instances) / sum(positive instances). See Parameters Tuning
for more discussion. Also, see Higgs Kaggle competition demo for examples: R, py1, py2, py3.

• updater [default= grow_colmaker,prune]

– A comma separated string defining the sequence of tree updaters to run, providing a modular way to con-
struct and to modify the trees. This is an advanced parameter that is usually set automatically, depending
on some other parameters. However, it could be also set explicitly by a user. The following updater plugins
exist:

* grow_colmaker: non-distributed column-based construction of trees.

* distcol: distributed tree construction with column-based data splitting mode.

* grow_histmaker: distributed tree construction with row-based data splitting based on global pro-
posal of histogram counting.

* grow_local_histmaker: based on local histogram counting.

* grow_skmaker: uses the approximate sketching algorithm.

* sync: synchronizes trees in all distributed nodes.

* refresh: refreshes tree’s statistics and/or leaf values based on the current data. Note that no random
subsampling of data rows is performed.

* prune: prunes the splits where loss < min_split_loss (or gamma).

– In a distributed setting, the implicit updater sequence value would be adjusted to grow_histmaker,
prune.

• refresh_leaf [default=1]

– This is a parameter of the refresh updater plugin. When this flag is 1, tree leafs as well as tree nodes’
stats are updated. When it is 0, only node stats are updated.

• process_type [default= default]

– A type of boosting process to run.

– Choices: default, update

* default: The normal boosting process which creates new trees.

* update: Starts from an existing model and only updates its trees. In each boosting iteration, a tree
from the initial model is taken, a specified sequence of updater plugins is run for that tree, and a
modified tree is added to the new model. The new model would have either the same or smaller
number of trees, depending on the number of boosting iteratons performed. Currently, the following
built-in updater plugins could be meaningfully used with this process type: refresh, prune. With
process_type=update, one cannot use updater plugins that create new trees.

• grow_policy [default= depthwise]

– Controls a way new nodes are added to the tree.

– Currently supported only if tree_method is set to hist.

– Choices: depthwise, `lossguide

* depthwise: split at nodes closest to the root.

* lossguide: split at nodes with highest loss change.
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• max_leaves [default=0]

– Maximum number of nodes to be added. Only relevant when grow_policy=lossguide is set.

• max_bin, [default=256]

– Only used if tree_method is set to hist.

– Maximum number of discrete bins to bucket continuous features.

– Increasing this number improves the optimality of splits at the cost of higher computation time.

• predictor, [default=‘‘cpu_predictor‘‘]

– The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU.

* cpu_predictor: Multicore CPU prediction algorithm.

* gpu_predictor: Prediction using GPU. Default when tree_method is gpu_exact or
gpu_hist.

Additional parameters for Dart Booster (booster=dart)

• sample_type [default= uniform]

– Type of sampling algorithm.

* uniform: dropped trees are selected uniformly.

* weighted: dropped trees are selected in proportion to weight.

• normalize_type [default= tree]

– Type of normalization algorithm.

* tree: new trees have the same weight of each of dropped trees.

· Weight of new trees are 1 / (k + learning_rate).

· Dropped trees are scaled by a factor of k / (k + learning_rate).

* forest: new trees have the same weight of sum of dropped trees (forest).

· Weight of new trees are 1 / (1 + learning_rate).

· Dropped trees are scaled by a factor of 1 / (1 + learning_rate).

• rate_drop [default=0.0]

– Dropout rate (a fraction of previous trees to drop during the dropout).

– range: [0.0, 1.0]

• one_drop [default=0]

– When this flag is enabled, at least one tree is always dropped during the dropout (allows Binomial-plus-one
or epsilon-dropout from the original DART paper).

• skip_drop [default=0.0]

– Probability of skipping the dropout procedure during a boosting iteration.

* If a dropout is skipped, new trees are added in the same manner as gbtree.

* Note that non-zero skip_drop has higher priority than rate_drop or one_drop.

– range: [0.0, 1.0]
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Parameters for Linear Booster (booster=gblinear)

• lambda [default=0, alias: reg_lambda]

– L2 regularization term on weights. Increasing this value will make model more conservative. Normalised
to number of training examples.

• alpha [default=0, alias: reg_alpha]

– L1 regularization term on weights. Increasing this value will make model more conservative. Normalised
to number of training examples.

• updater [default= shotgun]

– Choice of algorithm to fit linear model

* shotgun: Parallel coordinate descent algorithm based on shotgun algorithm. Uses ‘hogwild’ paral-
lelism and therefore produces a nondeterministic solution on each run.

* coord_descent: Ordinary coordinate descent algorithm. Also multithreaded but still produces a
deterministic solution.

Parameters for Tweedie Regression (objective=reg:tweedie)

• tweedie_variance_power [default=1.5]

– Parameter that controls the variance of the Tweedie distribution var(y) ~
E(y)^tweedie_variance_power

– range: (1,2)

– Set closer to 2 to shift towards a gamma distribution

– Set closer to 1 to shift towards a Poisson distribution.

1.6.2 Learning Task Parameters

Specify the learning task and the corresponding learning objective. The objective options are below:

• objective [default=reg:linear]

– reg:linear: linear regression

– reg:logistic: logistic regression

– binary:logistic: logistic regression for binary classification, output probability

– binary:logitraw: logistic regression for binary classification, output score before logistic transfor-
mation

– gpu:reg:linear, gpu:reg:logistic, gpu:binary:logistic,
gpu:binary:logitraw: versions of the corresponding objective functions evaluated on the
GPU; note that like the GPU histogram algorithm, they can only be used when the entire training session
uses the same dataset

– count:poisson –poisson regression for count data, output mean of poisson distribution

* max_delta_step is set to 0.7 by default in poisson regression (used to safeguard optimization)

– survival:cox: Cox regression for right censored survival time data (negative values are consid-
ered right censored). Note that predictions are returned on the hazard ratio scale (i.e., as HR =
exp(marginal_prediction) in the proportional hazard function h(t) = h0(t) * HR).
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– multi:softmax: set XGBoost to do multiclass classification using the softmax objective, you also need
to set num_class(number of classes)

– multi:softprob: same as softmax, but output a vector of ndata * nclass, which can be further
reshaped to ndata * nclass matrix. The result contains predicted probability of each data point
belonging to each class.

– rank:pairwise: set XGBoost to do ranking task by minimizing the pairwise loss

– reg:gamma: gamma regression with log-link. Output is a mean of gamma distribution. It might be
useful, e.g., for modeling insurance claims severity, or for any outcome that might be gamma-distributed.

– reg:tweedie: Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in
insurance, or for any outcome that might be Tweedie-distributed.

• base_score [default=0.5]

– The initial prediction score of all instances, global bias

– For sufficient number of iterations, changing this value will not have too much effect.

• eval_metric [default according to objective]

– Evaluation metrics for validation data, a default metric will be assigned according to objective (rmse for
regression, and error for classification, mean average precision for ranking)

– User can add multiple evaluation metrics. Python users: remember to pass the metrics in as list of param-
eters pairs instead of map, so that latter eval_metric won’t override previous one

– The choices are listed below:

* rmse: root mean square error

* mae: mean absolute error

* logloss: negative log-likelihood

* error: Binary classification error rate. It is calculated as #(wrong cases)/#(all cases).
For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as
positive instances, and the others as negative instances.

* error@t: a different than 0.5 binary classification threshold value could be specified by providing a
numerical value through ‘t’.

* merror: Multiclass classification error rate. It is calculated as #(wrong cases)/#(all
cases).

* mlogloss: Multiclass logloss.

* auc: Area under the curve

* ndcg: Normalized Discounted Cumulative Gain

* map: Mean average precision

* ndcg@n, map@n: ‘n’ can be assigned as an integer to cut off the top positions in the lists for evalua-
tion.

* ndcg-, map-, ndcg@n-, map@n-: In XGBoost, NDCG and MAP will evaluate the score of a list
without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these
score as 0 to be consistent under some conditions.

* poisson-nloglik: negative log-likelihood for Poisson regression

* gamma-nloglik: negative log-likelihood for gamma regression

* cox-nloglik: negative partial log-likelihood for Cox proportional hazards regression
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* gamma-deviance: residual deviance for gamma regression

* tweedie-nloglik: negative log-likelihood for Tweedie regression (at a specified value of the
tweedie_variance_power parameter)

• seed [default=0]

– Random number seed.

1.6.3 Command Line Parameters

The following parameters are only used in the console version of XGBoost

• num_round

– The number of rounds for boosting

• data

– The path of training data

• test:data

– The path of test data to do prediction

• save_period [default=0]

– The period to save the model. Setting save_period=10 means that for every 10 rounds XGBoost will
save the model. Setting it to 0 means not saving any model during the training.

• task [default= train] options: train, pred, eval, dump

– train: training using data

– pred: making prediction for test:data

– eval: for evaluating statistics specified by eval[name]=filename

– dump: for dump the learned model into text format

• model_in [default=NULL]

– Path to input model, needed for test, eval, dump tasks. If it is specified in training, XGBoost will
continue training from the input model.

• model_out [default=NULL]

– Path to output model after training finishes. If not specified, XGBoost will output files with such names as
0003.model where 0003 is number of boosting rounds.

• model_dir [default= models/]

– The output directory of the saved models during training

• fmap

– Feature map, used for dumping model

• dump_format [default= text] options: text, json

– Format of model dump file

• name_dump [default= dump.txt]

– Name of model dump file

• name_pred [default= pred.txt]
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– Name of prediction file, used in pred mode

• pred_margin [default=0]

– Predict margin instead of transformed probability

1.7 XGBoost Python Package

This page contains links to all the python related documents on python package. To install the package package,
checkout Installation Guide.

1.7.1 Contents

Python Package Introduction

This document gives a basic walkthrough of xgboost python package.

List of other Helpful Links

• Python walkthrough code collections

• Python API Reference

Install XGBoost

To install XGBoost, follow instructions in Installation Guide.

To verify your installation, run the following in Python:

import xgboost as xgb

Data Interface

The XGBoost python module is able to load data from:

• LibSVM text format file

• Comma-separated values (CSV) file

• NumPy 2D array

• SciPy 2D sparse array, and

• XGBoost binary buffer file.

(See Text Input Format of DMatrix for detailed description of text input format.)

The data is stored in a DMatrix object.

• To load a libsvm text file or a XGBoost binary file into DMatrix:

dtrain = xgb.DMatrix('train.svm.txt')
dtest = xgb.DMatrix('test.svm.buffer')

• To load a CSV file into DMatrix:

1.7. XGBoost Python Package 41

https://github.com/tqchen/xgboost/blob/master/demo/guide-python


xgboost, Release 0.72.1

# label_column specifies the index of the column containing the true label
dtrain = xgb.DMatrix('train.csv?format=csv&label_column=0')
dtest = xgb.DMatrix('test.csv?format=csv&label_column=0')

(Note that XGBoost does not support categorical features; if your data contains categorical features, load it as a
NumPy array first and then perform one-hot encoding.)

• To load a NumPy array into DMatrix:

data = np.random.rand(5, 10) # 5 entities, each contains 10 features
label = np.random.randint(2, size=5) # binary target
dtrain = xgb.DMatrix(data, label=label)

• To load a scipy.sparse array into DMatrix:

csr = scipy.sparse.csr_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csr)

• Saving DMatrix into a XGBoost binary file will make loading faster:

dtrain = xgb.DMatrix('train.svm.txt')
dtrain.save_binary('train.buffer')

• Missing values can be replaced by a default value in the DMatrix constructor:

dtrain = xgb.DMatrix(data, label=label, missing=-999.0)

• Weights can be set when needed:

w = np.random.rand(5, 1)
dtrain = xgb.DMatrix(data, label=label, missing=-999.0, weight=w)

Setting Parameters

XGBoost can use either a list of pairs or a dictionary to set parameters. For instance:

• Booster parameters

param = {'max_depth': 2, 'eta': 1, 'silent': 1, 'objective': 'binary:logistic'}
param['nthread'] = 4
param['eval_metric'] = 'auc'

• You can also specify multiple eval metrics:

param['eval_metric'] = ['auc', 'ams@0']

# alternatively:
# plst = param.items()
# plst += [('eval_metric', 'ams@0')]

• Specify validations set to watch performance

evallist = [(dtest, 'eval'), (dtrain, 'train')]
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Training

Training a model requires a parameter list and data set.

num_round = 10
bst = xgb.train(param, dtrain, num_round, evallist)

After training, the model can be saved.

bst.save_model('0001.model')

The model and its feature map can also be dumped to a text file.

# dump model
bst.dump_model('dump.raw.txt')
# dump model with feature map
bst.dump_model('dump.raw.txt', 'featmap.txt')

A saved model can be loaded as follows:

bst = xgb.Booster({'nthread': 4}) # init model
bst.load_model('model.bin') # load data

Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds. Early stopping
requires at least one set in evals. If there’s more than one, it will use the last.

train(..., evals=evals, early_stopping_rounds=10)

The model will train until the validation score stops improving. Validation error needs to decrease at least every
early_stopping_rounds to continue training.

If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration
and bst.best_ntree_limit. Note that xgboost.train() will return a model from the last iteration, not the
best one.

This works with both metrics to minimize (RMSE, log loss, etc.) and to maximize (MAP, NDCG, AUC). Note that if
you specify more than one evaluation metric the last one in param['eval_metric'] is used for early stopping.

Prediction

A model that has been trained or loaded can perform predictions on data sets.

# 7 entities, each contains 10 features
data = np.random.rand(7, 10)
dtest = xgb.DMatrix(data)
ypred = bst.predict(dtest)

If early stopping is enabled during training, you can get predictions from the best iteration with bst.
best_ntree_limit:

ypred = bst.predict(dtest, ntree_limit=bst.best_ntree_limit)
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Plotting

You can use plotting module to plot importance and output tree.

To plot importance, use xgboost.plot_importance(). This function requires matplotlib to be installed.

xgb.plot_importance(bst)

To plot the output tree via matplotlib, use xgboost.plot_tree(), specifying the ordinal number of the target
tree. This function requires graphviz and matplotlib.

xgb.plot_tree(bst, num_trees=2)

When you use IPython, you can use the xgboost.to_graphviz() function, which converts the target tree to
a graphviz instance. The graphviz instance is automatically rendered in IPython.

xgb.to_graphviz(bst, num_trees=2)

Python API Reference

This page gives the Python API reference of xgboost, please also refer to Python Package Introduction for more
information about python package.

• Core Data Structure

• Learning API

• Scikit-Learn API

• Plotting API

Core Data Structure

Core XGBoost Library.

class xgboost.DMatrix(data, label=None, missing=None, weight=None, silent=False, fea-
ture_names=None, feature_types=None, nthread=None)

Bases: object

Data Matrix used in XGBoost.

DMatrix is a internal data structure that used by XGBoost which is optimized for both memory efficiency and
training speed. You can construct DMatrix from numpy.arrays

Parameters

• data (string/numpy array/scipy.sparse/pd.DataFrame) – Data source of
DMatrix. When data is string type, it represents the path libsvm format txt file, or binary
file that xgboost can read from.

• label (list or numpy 1-D array, optional) – Label of the training data.

• missing (float, optional) – Value in the data which needs to be present as a miss-
ing value. If None, defaults to np.nan.

• weight (list or numpy 1-D array , optional) – Weight for each instance.
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• silent (boolean, optional) – Whether print messages during construction

• feature_names (list, optional) – Set names for features.

• feature_types (list, optional) – Set types for features.

• nthread (integer, optional) – Number of threads to use for loading data from
numpy array. If -1, uses maximum threads available on the system.

feature_names
Get feature names (column labels).

Returns feature_names

Return type list or None

feature_types
Get feature types (column types).

Returns feature_types

Return type list or None

get_base_margin()
Get the base margin of the DMatrix.

Returns base_margin

Return type float

get_float_info(field)
Get float property from the DMatrix.

Parameters field (str) – The field name of the information

Returns info – a numpy array of float information of the data

Return type array

get_label()
Get the label of the DMatrix.

Returns label

Return type array

get_uint_info(field)
Get unsigned integer property from the DMatrix.

Parameters field (str) – The field name of the information

Returns info – a numpy array of float information of the data

Return type array

get_weight()
Get the weight of the DMatrix.

Returns weight

Return type array

num_col()
Get the number of columns (features) in the DMatrix.

Returns number of columns

Return type int
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num_row()
Get the number of rows in the DMatrix.

Returns number of rows

Return type int

save_binary(fname, silent=True)
Save DMatrix to an XGBoost buffer.

Parameters

• fname (string) – Name of the output buffer file.

• silent (bool (optional; default: True)) – If set, the output is sup-
pressed.

set_base_margin(margin)
Set base margin of booster to start from.

This can be used to specify a prediction value of existing model to be base_margin However, remember
margin is needed, instead of transformed prediction e.g. for logistic regression: need to put in value before
logistic transformation see also example/demo.py

Parameters margin (array like) – Prediction margin of each datapoint

set_float_info(field, data)
Set float type property into the DMatrix.

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

set_float_info_npy2d(field, data)

Set float type property into the DMatrix for numpy 2d array input

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

set_group(group)
Set group size of DMatrix (used for ranking).

Parameters group (array like) – Group size of each group

set_label(label)
Set label of dmatrix

Parameters label (array like) – The label information to be set into DMatrix

set_label_npy2d(label)
Set label of dmatrix

Parameters label (array like) – The label information to be set into DMatrix from
numpy 2D array

set_uint_info(field, data)
Set uint type property into the DMatrix.

Parameters
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• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

set_weight(weight)
Set weight of each instance.

Parameters weight (array like) – Weight for each data point

set_weight_npy2d(weight)

Set weight of each instance for numpy 2D array

Parameters weight (array like) – Weight for each data point in numpy 2D array

slice(rindex)
Slice the DMatrix and return a new DMatrix that only contains rindex.

Parameters rindex (list) – List of indices to be selected.

Returns res – A new DMatrix containing only selected indices.

Return type DMatrix

class xgboost.Booster(params=None, cache=(), model_file=None)
Bases: object

A Booster of of XGBoost.

Booster is the model of xgboost, that contains low level routines for training, prediction and evaluation.

Parameters

• params (dict) – Parameters for boosters.

• cache (list) – List of cache items.

• model_file (string) – Path to the model file.

attr(key)
Get attribute string from the Booster.

Parameters key (str) – The key to get attribute from.

Returns value – The attribute value of the key, returns None if attribute do not exist.

Return type str

attributes()
Get attributes stored in the Booster as a dictionary.

Returns result – Returns an empty dict if there’s no attributes.

Return type dictionary of attribute_name: attribute_value pairs of strings.

boost(dtrain, grad, hess)
Boost the booster for one iteration, with customized gradient statistics.

Parameters

• dtrain (DMatrix) – The training DMatrix.

• grad (list) – The first order of gradient.

• hess (list) – The second order of gradient.

copy()
Copy the booster object.
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Returns booster – a copied booster model

Return type Booster

dump_model(fout, fmap=”, with_stats=False)
Dump model into a text file.

Parameters

• foout (string) – Output file name.

• fmap (string, optional) – Name of the file containing feature map names.

• with_stats (bool (optional)) – Controls whether the split statistics are output.

eval(data, name=’eval’, iteration=0)
Evaluate the model on mat.

Parameters

• data (DMatrix) – The dmatrix storing the input.

• name (str, optional) – The name of the dataset.

• iteration (int, optional) – The current iteration number.

Returns result – Evaluation result string.

Return type str

eval_set(evals, iteration=0, feval=None)
Evaluate a set of data.

Parameters

• evals (list of tuples (DMatrix, string)) – List of items to be evaluated.

• iteration (int) – Current iteration.

• feval (function) – Custom evaluation function.

Returns result – Evaluation result string.

Return type str

get_dump(fmap=”, with_stats=False, dump_format=’text’)
Returns the dump the model as a list of strings.

get_fscore(fmap=”)
Get feature importance of each feature.

Parameters fmap (str (optional)) – The name of feature map file

get_score(fmap=”, importance_type=’weight’)
Get feature importance of each feature. Importance type can be defined as:

• ‘weight’: the number of times a feature is used to split the data across all trees.

• ‘gain’: the average gain across all splits the feature is used in.

• ‘cover’: the average coverage across all splits the feature is used in.

Parameters fmap (str (optional)) – The name of feature map file

get_split_value_histogram(feature, fmap=”, bins=None, as_pandas=True)
Get split value histogram of a feature

Parameters
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• feature (str) – The name of the feature.

• fmap (str (optional)) – The name of feature map file.

• bin (int, default None) – The maximum number of bins. Number of bins equals
number of unique split values n_unique, if bins == None or bins > n_unique.

• as_pandas (bool, default True) – Return pd.DataFrame when pandas is in-
stalled. If False or pandas is not installed, return numpy ndarray.

Returns

• a histogram of used splitting values for the specified feature

• either as numpy array or pandas DataFrame.

load_model(fname)
Load the model from a file.

Parameters fname (string or a memory buffer) – Input file name or memory
buffer(see also save_raw)

load_rabit_checkpoint()
Initialize the model by load from rabit checkpoint.

Returns version – The version number of the model.

Return type integer

predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, ap-
prox_contribs=False, pred_interactions=False, validate_features=True)

Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call bst.copy() to make copies of model object and then call predict().

Note: Using predict() with DART booster

If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be
evaluated. This will produce incorrect results if data is not the training data. To obtain correct results on
test sets, set ntree_limit to a nonzero value, e.g.

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (DMatrix) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

• pred_leaf (bool) – When this option is on, the output will be a matrix of (nsample,
ntrees) with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1 in both tree 1
and tree 0.
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• pred_contribs (bool) – When this is True the output will be a matrix of size (nsam-
ple, nfeats + 1) with each record indicating the feature contributions (SHAP values) for
that prediction. The sum of all feature contributions is equal to the raw untransformed
margin value of the prediction. Note the final column is the bias term.

• approx_contribs (bool) – Approximate the contributions of each feature

• pred_interactions (bool) – When this is True the output will be a matrix of size
(nsample, nfeats + 1, nfeats + 1) indicating the SHAP interaction values for each pair of
features. The sum of each row (or column) of the interaction values equals the corre-
sponding SHAP value (from pred_contribs), and the sum of the entire matrix equals the
raw untransformed margin value of the prediction. Note the last row and column corre-
spond to the bias term.

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction

Return type numpy array

save_model(fname)
Save the model to a file.

Parameters fname (string) – Output file name

save_rabit_checkpoint()
Save the current booster to rabit checkpoint.

save_raw()
Save the model to a in memory buffer representation

Returns

Return type a in memory buffer representation of the model

set_attr(**kwargs)
Set the attribute of the Booster.

Parameters **kwargs – The attributes to set. Setting a value to None deletes an attribute.

set_param(params, value=None)
Set parameters into the Booster.

Parameters

• params (dict/list/str) – list of key,value pairs, dict of key to value or simply str
key

• value (optional) – value of the specified parameter, when params is str key

update(dtrain, iteration, fobj=None)
Update for one iteration, with objective function calculated internally.

Parameters

• dtrain (DMatrix) – Training data.

• iteration (int) – Current iteration number.

• fobj (function) – Customized objective function.
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Learning API

Training Library containing training routines.

xgboost.train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, max-
imize=False, early_stopping_rounds=None, evals_result=None, verbose_eval=True,
xgb_model=None, callbacks=None, learning_rates=None)

Train a booster with given parameters.

Parameters

• params (dict) – Booster params.

• dtrain (DMatrix) – Data to be trained.

• num_boost_round (int) – Number of boosting iterations.

• evals (list of pairs (DMatrix, string)) – List of items to be evaluated dur-
ing training, this allows user to watch performance on the validation set.

• obj (function) – Customized objective function.

• feval (function) – Customized evaluation function.

• maximize (bool) – Whether to maximize feval.

• early_stopping_rounds (int) – Activates early stopping. Validation error needs to
decrease at least every <early_stopping_rounds> round(s) to continue training. Requires at
least one item in evals. If there’s more than one, will use the last. Returns the model from the
last iteration (not the best one). If early stopping occurs, the model will have three additional
fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit
to get the correct value if num_parallel_tree and/or num_class appears in the parameters)

• evals_result (dict) – This dictionary stores the evaluation results of all the items in
watchlist.

Example: with a watchlist containing [(dtest,’eval’), (dtrain,’train’)] and a parameter con-
taining (‘eval_metric’: ‘logloss’), the evals_result returns

{'train': {'logloss': ['0.48253', '0.35953']},
'eval': {'logloss': ['0.480385', '0.357756']}}

• verbose_eval (bool or int) – Requires at least one item in evals. If verbose_eval
is True then the evaluation metric on the validation set is printed at each boosting stage. If
verbose_eval is an integer then the evaluation metric on the validation set is printed at every
given verbose_eval boosting stage. The last boosting stage / the boosting stage found by
using early_stopping_rounds is also printed. Example: with verbose_eval=4 and at
least one item in evals, an evaluation metric is printed every 4 boosting stages, instead of
every boosting stage.

• learning_rates (list or function (deprecated - use callback
API instead)) – List of learning rate for each boosting round or a customized function
that calculates eta in terms of current number of round and the total number of boosting
round (e.g. yields learning rate decay)

• xgb_model (file name of stored xgb model or 'Booster'
instance) – Xgb model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
xgb.callback module. Example: [xgb.callback.reset_learning_rate(custom_rates)]
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Returns booster

Return type a trained booster model

xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None, metrics=(),
obj=None, feval=None, maximize=False, early_stopping_rounds=None, fpreproc=None,
as_pandas=True, verbose_eval=None, show_stdv=True, seed=0, callbacks=None, shuf-
fle=True)

Cross-validation with given parameters.

Parameters

• params (dict) – Booster params.

• dtrain (DMatrix) – Data to be trained.

• num_boost_round (int) – Number of boosting iterations.

• nfold (int) – Number of folds in CV.

• stratified (bool) – Perform stratified sampling.

• folds (a KFold or StratifiedKFold instance) – Sklearn KFolds or Strati-
fiedKFolds.

• metrics (string or list of strings) – Evaluation metrics to be watched in
CV.

• obj (function) – Custom objective function.

• feval (function) – Custom evaluation function.

• maximize (bool) – Whether to maximize feval.

• early_stopping_rounds (int) – Activates early stopping. CV error needs to de-
crease at least every <early_stopping_rounds> round(s) to continue. Last entry in evaluation
history is the one from best iteration.

• fpreproc (function) – Preprocessing function that takes (dtrain, dtest, param) and
returns transformed versions of those.

• as_pandas (bool, default True) – Return pd.DataFrame when pandas is in-
stalled. If False or pandas is not installed, return np.ndarray

• verbose_eval (bool, int, or None, default None) – Whether to display
the progress. If None, progress will be displayed when np.ndarray is returned. If True,
progress will be displayed at boosting stage. If an integer is given, progress will be displayed
at every given verbose_eval boosting stage.

• show_stdv (bool, default True) – Whether to display the standard deviation in
progress. Results are not affected, and always contains std.

• seed (int) – Seed used to generate the folds (passed to numpy.random.seed).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
xgb.callback module. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

• shuffle (bool) – Shuffle data before creating folds.

Returns evaluation history

Return type list(string)
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Scikit-Learn API

Scikit-Learn Wrapper interface for XGBoost.

class xgboost.XGBRegressor(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True,
objective=’reg:linear’, booster=’gbtree’, n_jobs=1, nthread=None,
gamma=0, min_child_weight=1, max_delta_step=0, subsam-
ple=1, colsample_bytree=1, colsample_bylevel=1, reg_alpha=0,
reg_lambda=1, scale_pos_weight=1, base_score=0.5, ran-
dom_state=0, seed=None, missing=None, **kwargs)

Bases: xgboost.sklearn.XGBModel, object

Implementation of the scikit-learn API for XGBoost regression.

Parameters

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• n_estimators (int) – Number of boosted trees to fit.

• silent (boolean) – Whether to print messages while running boosting.

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• nthread (int) – Number of parallel threads used to run xgboost. (Deprecated, please use
n_jobs)

• n_jobs (int) – Number of parallel threads used to run xgboost. (replaces nthread)

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (int) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each split, in each
level.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• seed (int) – Random number seed. (Deprecated, please use random_state)

• random_state (int) – Random number seed. (replaces seed)

• missing (float, optional) – Value in the data which needs to be present as a miss-
ing value. If None, defaults to np.nan.
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• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: A custom objective function can be provided for the objective parameter. In this case, it should have
the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples] The target values

y_pred: array_like of shape [n_samples] The predicted values

grad: array_like of shape [n_samples] The value of the gradient for each sample point.

hess: array_like of shape [n_samples] The value of the second derivative for each sample point

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

evals_result()
Return the evaluation results.

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for
all passed eval_sets. When eval_metric is also passed to the fit function, the evals_result will
contain the eval_metrics passed to the fit function

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBModel(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',

(continues on next page)

54 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://docs.python.org/3.6/library/functions.html#int


xgboost, Release 0.72.1

(continued from previous page)

verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

feature_importances_
Feature importances property

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, ver-
bose=True, xgb_model=None, sample_weight_eval_set=None)
Fit the gradient boosting model

Parameters

• X (array_like) – Feature matrix

• y (array_like) – Labels

• sample_weight (array_like) – instance weights

• eval_set (list, optional) – A list of (X, y) tuple pairs to use as a validation set
for early-stopping

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of instance weights on the i-th validation set.

• eval_metric (str, callable, optional) – If a str, should be a built-in eval-
uation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The
call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that
you may need to call the get_label method. It must return a str, value pair where the str is
a name for the evaluation and value is the value of the evaluation function. This objective
is always minimized.

• early_stopping_rounds (int) – Activates early stopping. Validation error needs
to decrease at least every <early_stopping_rounds> round(s) to continue training. Requires
at least one item in evals. If there’s more than one, will use the last. Returns the model
from the last iteration (not the best one). If early stopping occurs, the model will have
three additional fields: bst.best_score, bst.best_iteration and bst.best_ntree_limit. (Use
bst.best_ntree_limit to get the correct value if num_parallel_tree and/or num_class appears
in the parameters)

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored xgb model or ‘Booster’ instance Xgb model to
be loaded before training (allows training continuation).

get_booster()
Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns booster
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Return type a xgboost booster of underlying model

get_params(deep=False)
Get parameters.

get_xgb_params()
Get xgboost type parameters.

predict(data, output_margin=False, ntree_limit=0)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

Note: Using predict() with DART booster

If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be
evaluated. This will produce incorrect results if data is not the training data. To obtain correct results on
test sets, set ntree_limit to a nonzero value, e.g.

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (DMatrix) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns prediction

Return type numpy array

class xgboost.XGBClassifier(max_depth=3, learning_rate=0.1, n_estimators=100, silent=True,
objective=’binary:logistic’, booster=’gbtree’, n_jobs=1,
nthread=None, gamma=0, min_child_weight=1, max_delta_step=0,
subsample=1, colsample_bytree=1, colsample_bylevel=1,
reg_alpha=0, reg_lambda=1, scale_pos_weight=1, base_score=0.5,
random_state=0, seed=None, missing=None, **kwargs)

Bases: xgboost.sklearn.XGBModel, object

Implementation of the scikit-learn API for XGBoost classification.

Parameters

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• n_estimators (int) – Number of boosted trees to fit.

• silent (boolean) – Whether to print messages while running boosting.

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).
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• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• nthread (int) – Number of parallel threads used to run xgboost. (Deprecated, please use
n_jobs)

• n_jobs (int) – Number of parallel threads used to run xgboost. (replaces nthread)

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (int) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each split, in each
level.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• seed (int) – Random number seed. (Deprecated, please use random_state)

• random_state (int) – Random number seed. (replaces seed)

• missing (float, optional) – Value in the data which needs to be present as a miss-
ing value. If None, defaults to np.nan.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: A custom objective function can be provided for the objective parameter. In this case, it should have
the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples] The target values

y_pred: array_like of shape [n_samples] The predicted values

grad: array_like of shape [n_samples] The value of the gradient for each sample point.

hess: array_like of shape [n_samples] The value of the second derivative for each sample point

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.
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Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

evals_result()
Return the evaluation results.

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for all passed
eval_sets. When eval_metric is also passed to the fit function, the evals_result will contain the eval_metrics
passed to the fit function

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBClassifier(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

feature_importances_
Feature importances property

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, sample_weight=None, eval_set=None, eval_metric=None, early_stopping_rounds=None, ver-
bose=True, xgb_model=None, sample_weight_eval_set=None)
Fit gradient boosting classifier

Parameters

• X (array_like) – Feature matrix

• y (array_like) – Labels

• sample_weight (array_like) – Weight for each instance
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• eval_set (list, optional) – A list of (X, y) pairs to use as a validation set for
early-stopping

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of instance weights on the i-th validation set.

• eval_metric (str, callable, optional) – If a str, should be a built-in eval-
uation metric to use. See doc/parameter.rst. If callable, a custom evaluation metric. The
call signature is func(y_predicted, y_true) where y_true will be a DMatrix object such that
you may need to call the get_label method. It must return a str, value pair where the str is
a name for the evaluation and value is the value of the evaluation function. This objective
is always minimized.

• early_stopping_rounds (int, optional) – Activates early stopping. Vali-
dation error needs to decrease at least every <early_stopping_rounds> round(s) to con-
tinue training. Requires at least one item in evals. If there’s more than one, will use
the last. Returns the model from the last iteration (not the best one). If early stopping
occurs, the model will have three additional fields: bst.best_score, bst.best_iteration and
bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct value if num_parallel_tree
and/or num_class appears in the parameters)

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored xgb model or ‘Booster’ instance Xgb model to
be loaded before training (allows training continuation).

get_booster()
Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns booster

Return type a xgboost booster of underlying model

get_params(deep=False)
Get parameters.

get_xgb_params()
Get xgboost type parameters.

predict(data, output_margin=False, ntree_limit=0)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

Note: Using predict() with DART booster

If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be
evaluated. This will produce incorrect results if data is not the training data. To obtain correct results on
test sets, set ntree_limit to a nonzero value, e.g.

preds = bst.predict(dtest, ntree_limit=num_round)
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Parameters

• data (DMatrix) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns prediction

Return type numpy array

predict_proba(data, ntree_limit=0)
Predict the probability of each data example being of a given class.

Note: This function is not thread safe

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict

Parameters

• data (DMatrix) – The dmatrix storing the input.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns prediction – a numpy array with the probability of each data example being of a given
class.

Return type numpy array

Plotting API

Plotting Library.

xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, ti-
tle=’Feature importance’, xlabel=’F score’, ylabel=’Features’,
importance_type=’weight’, max_num_features=None, grid=True,
show_values=True, **kwargs)

Plot importance based on fitted trees.

Parameters

• booster (Booster, XGBModel or dict) – Booster or XGBModel instance, or dict
taken by Booster.get_fscore()

• ax (matplotlib Axes, default None) – Target axes instance. If None, new figure
and axes will be created.

• grid (bool, Turn the axes grids on or off. Default is True
(On)) –

• importance_type (str, default "weight") – How the importance is calcu-
lated: either “weight”, “gain”, or “cover”

– ”weight” is the number of times a feature appears in a tree

– ”gain” is the average gain of splits which use the feature
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– ”cover” is the average coverage of splits which use the feature where coverage is defined
as the number of samples affected by the split

• max_num_features (int, default None) – Maximum number of top features dis-
played on plot. If None, all features will be displayed.

• height (float, default 0.2) – Bar height, passed to ax.barh()

• xlim (tuple, default None) – Tuple passed to axes.xlim()

• ylim (tuple, default None) – Tuple passed to axes.ylim()

• title (str, default "Feature importance") – Axes title. To disable, pass
None.

• xlabel (str, default "F score") – X axis title label. To disable, pass None.

• ylabel (str, default "Features") – Y axis title label. To disable, pass None.

• show_values (bool, default True) – Show values on plot. To disable, pass False.

• kwargs – Other keywords passed to ax.barh()

Returns ax

Return type matplotlib Axes

xgboost.plot_tree(booster, fmap=”, num_trees=0, rankdir=’UT’, ax=None, **kwargs)
Plot specified tree.

Parameters

• booster (Booster, XGBModel) – Booster or XGBModel instance

• fmap (str (optional)) – The name of feature map file

• num_trees (int, default 0) – Specify the ordinal number of target tree

• rankdir (str, default "UT") – Passed to graphiz via graph_attr

• ax (matplotlib Axes, default None) – Target axes instance. If None, new figure
and axes will be created.

• kwargs – Other keywords passed to to_graphviz

Returns ax

Return type matplotlib Axes

xgboost.to_graphviz(booster, fmap=”, num_trees=0, rankdir=’UT’, yes_color=’#0000FF’,
no_color=’#FF0000’, **kwargs)

Convert specified tree to graphviz instance. IPython can automatically plot the returned graphiz instance. Oth-
erwise, you should call .render() method of the returned graphiz instance.

Parameters

• booster (Booster, XGBModel) – Booster or XGBModel instance

• fmap (str (optional)) – The name of feature map file

• num_trees (int, default 0) – Specify the ordinal number of target tree

• rankdir (str, default "UT") – Passed to graphiz via graph_attr

• yes_color (str, default '#0000FF') – Edge color when meets the node condi-
tion.

• no_color (str, default '#FF0000') – Edge color when doesn’t meet the node
condition.
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• kwargs – Other keywords passed to graphviz graph_attr

Returns ax

Return type matplotlib Axes

1.8 XGBoost R Package

You have found the XGBoost R Package!

1.8.1 Get Started

• Checkout the Installation Guide contains instructions to install xgboost, and Tutorials for examples on how to
use XGBoost for various tasks.

• Read the API documentation.

• Please visit Walk-through Examples.

1.8.2 Tutorials

XGBoost R Tutorial

Introduction

Xgboost is short for eXtreme Gradient Boosting package.

The purpose of this Vignette is to show you how to use Xgboost to build a model and make predictions.

It is an efficient and scalable implementation of gradient boosting framework by @friedman2000additive and @fried-
man2001greedy. Two solvers are included:

• linear model ;

• tree learning algorithm.

It supports various objective functions, including regression, classification and ranking. The package is made to be
extendible, so that users are also allowed to define their own objective functions easily.

It has been used to win several Kaggle competitions.

It has several features:

• Speed: it can automatically do parallel computation on Windows and Linux, with OpenMP. It is generally over
10 times faster than the classical gbm.

• Input Type: it takes several types of input data:

– Dense Matrix: R’s dense matrix, i.e. matrix ;

– Sparse Matrix: R’s sparse matrix, i.e. Matrix::dgCMatrix ;

– Data File: local data files ;

– xgb.DMatrix: its own class (recommended).

• Sparsity: it accepts sparse input for both tree booster and linear booster, and is optimized for sparse input ;

• Customization: it supports customized objective functions and evaluation functions.
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Installation

Github version

For weekly updated version (highly recommended), install from Github:

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

Windows user will need to install Rtools first.

CRAN version

The version 0.4-2 is on CRAN, and you can install it by:

install.packages("xgboost")

Formerly available versions can be obtained from the CRAN archive

Learning

For the purpose of this tutorial we will load XGBoost package.

require(xgboost)

Dataset presentation

In this example, we are aiming to predict whether a mushroom can be eaten or not (like in many tutorials, example
data are the same as you will use on in your every day life :-).

Mushroom data is cited from UCI Machine Learning Repository. @Bache+Lichman:2013.

Dataset loading

We will load the agaricus datasets embedded with the package and will link them to variables.

The datasets are already split in:

• train: will be used to build the model ;

• test: will be used to assess the quality of our model.

Why split the dataset in two parts?

In the first part we will build our model. In the second part we will want to test it and assess its quality. Without
dividing the dataset we would test the model on the data which the algorithm have already seen.

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
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In the real world, it would be up to you to make this division between train and test data. The way
to do it is out of the purpose of this article, however caret package may help.

Each variable is a list containing two things, label and data:

str(train)

## List of 2
## $ data :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## .. ..@ i : int [1:143286] 2 6 8 11 18 20 21 24 28 32 ...
## .. ..@ p : int [1:127] 0 369 372 3306 5845 6489 6513 8380 8384 10991 ...
## .. ..@ Dim : int [1:2] 6513 126
## .. ..@ Dimnames:List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:126] "cap-shape=bell" "cap-shape=conical" "cap-shape=convex"
→˓"cap-shape=flat" ...
## .. ..@ x : num [1:143286] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..@ factors : list()
## $ label: num [1:6513] 1 0 0 1 0 0 0 1 0 0 ...

label is the outcome of our dataset meaning it is the binary classification we will try to predict.

Let’s discover the dimensionality of our datasets.

dim(train$data)

## [1] 6513 126

dim(test$data)

## [1] 1611 126

This dataset is very small to not make the R package too heavy, however XGBoost is built to manage huge dataset
very efficiently.

As seen below, the data are stored in a dgCMatrix which is a sparse matrix and label vector is a numeric
vector ({0,1}):

class(train$data)[1]

## [1] "dgCMatrix"

class(train$label)

## [1] "numeric"

Basic Training using XGBoost

This step is the most critical part of the process for the quality of our model.

Basic training

We are using the train data. As explained above, both data and label are stored in a list.
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In a sparse matrix, cells containing 0 are not stored in memory. Therefore, in a dataset mainly made of 0, memory
size is reduced. It is very usual to have such dataset.

We will train decision tree model using the following parameters:

• objective = "binary:logistic": we will train a binary classification model ;

• max.deph = 2: the trees won’t be deep, because our case is very simple ;

• nthread = 2: the number of cpu threads we are going to use;

• nround = 2: there will be two passes on the data, the second one will enhance the model by further reducing
the difference between ground truth and prediction.

bstSparse <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1,
→˓nthread = 2, nround = 2, objective = "binary:logistic")

## [0] train-error:0.046522
## [1] train-error:0.022263

More complex the relationship between your features and your label is, more passes you need.

Parameter variations

Dense matrix

Alternatively, you can put your dataset in a dense matrix, i.e. a basic R matrix.

bstDense <- xgboost(data = as.matrix(train$data), label = train$label, max.depth = 2,
→˓eta = 1, nthread = 2, nround = 2, objective = "binary:logistic")

## [0] train-error:0.046522
## [1] train-error:0.022263

xgb.DMatrix

XGBoost offers a way to group them in a xgb.DMatrix. You can even add other meta data in it. It will be useful
for the most advanced features we will discover later.

dtrain <- xgb.DMatrix(data = train$data, label = train$label)
bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2,
→˓objective = "binary:logistic")

## [0] train-error:0.046522
## [1] train-error:0.022263

Verbose option

XGBoost has several features to help you to view how the learning progress internally. The purpose is to help you to
set the best parameters, which is the key of your model quality.

One of the simplest way to see the training progress is to set the verbose option (see below for more advanced
technics).
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# verbose = 0, no message
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2,
→˓objective = "binary:logistic", verbose = 0)

# verbose = 1, print evaluation metric
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2,
→˓objective = "binary:logistic", verbose = 1)

## [0] train-error:0.046522
## [1] train-error:0.022263

# verbose = 2, also print information about tree
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nround = 2,
→˓objective = "binary:logistic", verbose = 2)

## [11:41:01] amalgamation/../src/tree/updater_prune.cc:74: tree pruning end, 1 roots,
→˓ 6 extra nodes, 0 pruned nodes, max_depth=2
## [0] train-error:0.046522
## [11:41:01] amalgamation/../src/tree/updater_prune.cc:74: tree pruning end, 1 roots,
→˓ 4 extra nodes, 0 pruned nodes, max_depth=2
## [1] train-error:0.022263

Basic prediction using XGBoost

Perform the prediction

The purpose of the model we have built is to classify new data. As explained before, we will use the test dataset for
this step.

pred <- predict(bst, test$data)

# size of the prediction vector
print(length(pred))

## [1] 1611

# limit display of predictions to the first 10
print(head(pred))

## [1] 0.28583017 0.92392391 0.28583017 0.28583017 0.05169873 0.92392391

These numbers doesn’t look like binary classification {0,1}. We need to perform a simple transformation before
being able to use these results.

Transform the regression in a binary classification

The only thing that XGBoost does is a regression. XGBoost is using label vector to build its regression model.

How can we use a regression model to perform a binary classification?
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If we think about the meaning of a regression applied to our data, the numbers we get are probabilities that a datum
will be classified as 1. Therefore, we will set the rule that if this probability for a specific datum is > 0.5 then the
observation is classified as 1 (or 0 otherwise).

prediction <- as.numeric(pred > 0.5)
print(head(prediction))

## [1] 0 1 0 0 0 1

Measuring model performance

To measure the model performance, we will compute a simple metric, the average error.

err <- mean(as.numeric(pred > 0.5) != test$label)
print(paste("test-error=", err))

## [1] "test-error= 0.0217256362507759"

Note that the algorithm has not seen the test data during the model construction.

Steps explanation:

1. as.numeric(pred > 0.5) applies our rule that when the probability (<=> regression <=> prediction) is
> 0.5 the observation is classified as 1 and 0 otherwise ;

2. probabilityVectorPreviouslyComputed != test$label computes the vector of error between
true data and computed probabilities ;

3. mean(vectorOfErrors) computes the average error itself.

The most important thing to remember is that to do a classification, you just do a regression to the label and then
apply a threshold.

Multiclass classification works in a similar way.

This metric is 0.02 and is pretty low: our yummly mushroom model works well!

Advanced features

Most of the features below have been implemented to help you to improve your model by offering a better understand-
ing of its content.

Dataset preparation

For the following advanced features, we need to put data in xgb.DMatrix as explained above.

dtrain <- xgb.DMatrix(data = train$data, label=train$label)
dtest <- xgb.DMatrix(data = test$data, label=test$label)

Measure learning progress with xgb.train

Both xgboost (simple) and xgb.train (advanced) functions train models.
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One of the special feature of xgb.train is the capacity to follow the progress of the learning after each round.
Because of the way boosting works, there is a time when having too many rounds lead to an overfitting. You can see
this feature as a cousin of cross-validation method. The following techniques will help you to avoid overfitting or
optimizing the learning time in stopping it as soon as possible.

One way to measure progress in learning of a model is to provide to XGBoost a second dataset already classified.
Therefore it can learn on the first dataset and test its model on the second one. Some metrics are measured after each
round during the learning.

in some way it is similar to what we have done above with the average error. The main difference is that
below it was after building the model, and now it is during the construction that we measure errors.

For the purpose of this example, we use watchlist parameter. It is a list of xgb.DMatrix, each of them tagged
with a name.

watchlist <- list(train=dtrain, test=dtest)

bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nround=2,
→˓watchlist=watchlist, objective = "binary:logistic")

## [0] train-error:0.046522 test-error:0.042831
## [1] train-error:0.022263 test-error:0.021726

XGBoost has computed at each round the same average error metric than seen above (we set nround to 2, that is why
we have two lines). Obviously, the train-error number is related to the training dataset (the one the algorithm
learns from) and the test-error number to the test dataset.

Both training and test error related metrics are very similar, and in some way, it makes sense: what we have learned
from the training dataset matches the observations from the test dataset.

If with your own dataset you have not such results, you should think about how you divided your dataset in training
and test. May be there is something to fix. Again, caret package may help.

For a better understanding of the learning progression, you may want to have some specific metric or even use multiple
evaluation metrics.

bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nround=2,
→˓watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective =
→˓"binary:logistic")

## [0] train-error:0.046522 train-logloss:0.233376 test-error:0.042831 test-
→˓logloss:0.226686
## [1] train-error:0.022263 train-logloss:0.136658 test-error:0.021726 test-
→˓logloss:0.137874

eval.metric allows us to monitor two new metrics for each round, logloss and error.

Linear boosting

Until now, all the learnings we have performed were based on boosting trees. XGBoost implements a second al-
gorithm, based on linear boosting. The only difference with previous command is booster = "gblinear"
parameter (and removing eta parameter).

bst <- xgb.train(data=dtrain, booster = "gblinear", max.depth=2, nthread = 2,
→˓nround=2, watchlist=watchlist, eval.metric = "error", eval.metric = "logloss",
→˓objective = "binary:logistic")
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## [0] train-error:0.024720 train-logloss:0.184616 test-error:0.022967 test-
→˓logloss:0.184234
## [1] train-error:0.004146 train-logloss:0.069885 test-error:0.003724 test-
→˓logloss:0.068081

In this specific case, linear boosting gets slightly better performance metrics than decision trees based algorithm.

In simple cases, it will happen because there is nothing better than a linear algorithm to catch a linear link. However,
decision trees are much better to catch a non linear link between predictors and outcome. Because there is no silver
bullet, we advise you to check both algorithms with your own datasets to have an idea of what to use.

Manipulating xgb.DMatrix

Save / Load

Like saving models, xgb.DMatrix object (which groups both dataset and outcome) can also be saved using xgb.
DMatrix.save function.

xgb.DMatrix.save(dtrain, "dtrain.buffer")

## [1] TRUE

# to load it in, simply call xgb.DMatrix
dtrain2 <- xgb.DMatrix("dtrain.buffer")

## [11:41:01] 6513x126 matrix with 143286 entries loaded from dtrain.buffer

bst <- xgb.train(data=dtrain2, max.depth=2, eta=1, nthread = 2, nround=2,
→˓watchlist=watchlist, objective = "binary:logistic")

## [0] train-error:0.046522 test-error:0.042831
## [1] train-error:0.022263 test-error:0.021726

Information extraction

Information can be extracted from xgb.DMatrix using getinfo function. Hereafter we will extract label data.

label = getinfo(dtest, "label")
pred <- predict(bst, dtest)
err <- as.numeric(sum(as.integer(pred > 0.5) != label))/length(label)
print(paste("test-error=", err))

## [1] "test-error= 0.0217256362507759"

View feature importance/influence from the learnt model

Feature importance is similar to R gbm package’s relative influence (rel.inf).
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importance_matrix <- xgb.importance(model = bst)
print(importance_matrix)
xgb.plot.importance(importance_matrix = importance_matrix)

View the trees from a model

You can dump the tree you learned using xgb.dump into a text file.

xgb.dump(bst, with.stats = T)

## [1] "booster[0]"
## [2] "0:[f28<-1.00136e-05] yes=1,no=2,missing=1,gain=4000.53,cover=1628.25"
## [3] "1:[f55<-1.00136e-05] yes=3,no=4,missing=3,gain=1158.21,cover=924.5"
## [4] "3:leaf=1.71218,cover=812"
## [5] "4:leaf=-1.70044,cover=112.5"
## [6] "2:[f108<-1.00136e-05] yes=5,no=6,missing=5,gain=198.174,cover=703.75"
## [7] "5:leaf=-1.94071,cover=690.5"
## [8] "6:leaf=1.85965,cover=13.25"
## [9] "booster[1]"
## [10] "0:[f59<-1.00136e-05] yes=1,no=2,missing=1,gain=832.545,cover=788.852"
## [11] "1:[f28<-1.00136e-05] yes=3,no=4,missing=3,gain=569.725,cover=768.39"
## [12] "3:leaf=0.784718,cover=458.937"
## [13] "4:leaf=-0.96853,cover=309.453"
## [14] "2:leaf=-6.23624,cover=20.4624"

You can plot the trees from your model using ‘‘‘xgb.plot.tree‘‘

xgb.plot.tree(model = bst)

if you provide a path to fname parameter you can save the trees to your hard drive.

Save and load models

Maybe your dataset is big, and it takes time to train a model on it? May be you are not a big fan of losing time in
redoing the same task again and again? In these very rare cases, you will want to save your model and load it when
required.

Hopefully for you, XGBoost implements such functions.

# save model to binary local file
xgb.save(bst, "xgboost.model")

## [1] TRUE

xgb.save function should return TRUE if everything goes well and crashes otherwise.

An interesting test to see how identical our saved model is to the original one would be to compare the two predictions.

# load binary model to R
bst2 <- xgb.load("xgboost.model")
pred2 <- predict(bst2, test$data)

# And now the test
print(paste("sum(abs(pred2-pred))=", sum(abs(pred2-pred))))
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## [1] "sum(abs(pred2-pred))= 0"

result is 0? We are good!

In some very specific cases, like when you want to pilot XGBoost from caret package, you will want to save the
model as a R binary vector. See below how to do it.

# save model to R's raw vector
rawVec <- xgb.save.raw(bst)

# print class
print(class(rawVec))

## [1] "raw"

# load binary model to R
bst3 <- xgb.load(rawVec)
pred3 <- predict(bst3, test$data)

# pred2 should be identical to pred
print(paste("sum(abs(pred3-pred))=", sum(abs(pred2-pred))))

## [1] "sum(abs(pred3-pred))= 0"

Again 0? It seems that XGBoost works pretty well!

References

Understand your dataset with XGBoost

Introduction

The purpose of this Vignette is to show you how to use Xgboost to discover and understand your own dataset better.

This Vignette is not about predicting anything (see Xgboost presentation). We will explain how to use Xgboost to
highlight the link between the features of your data and the outcome.

Package loading:

require(xgboost)
require(Matrix)
require(data.table)
if (!require('vcd')) install.packages('vcd')

VCD package is used for one of its embedded dataset only.

Preparation of the dataset

Numeric VS categorical variables

Xgboost manages only numeric vectors.

What to do when you have categorical data?
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A categorical variable has a fixed number of different values. For instance, if a variable called Colour can have only
one of these three values, red, blue or green, then Colour is a categorical variable.

In R, a categorical variable is called factor.

Type ?factor in the console for more information.

To answer the question above we will convert categorical variables to numeric one.

Conversion from categorical to numeric variables

Looking at the raw data

In this Vignette we will see how to transform a dense data.frame (dense = few zeroes in the matrix) with categor-
ical variables to a very sparse matrix (sparse = lots of zero in the matrix) of numeric features.

The method we are going to see is usually called one-hot encoding.

The first step is to load Arthritis dataset in memory and wrap it with data.table package.

data(Arthritis)
df <- data.table(Arthritis, keep.rownames = F)

data.table is 100% compliant with R data.frame but its syntax is more consistent and its perfor-
mance for large dataset is best in class (dplyr from R and Pandas from Python included). Some parts
of Xgboost R package use data.table.

The first thing we want to do is to have a look to the first lines of the data.table:

head(df)

## ID Treatment Sex Age Improved
## 1: 57 Treated Male 27 Some
## 2: 46 Treated Male 29 None
## 3: 77 Treated Male 30 None
## 4: 17 Treated Male 32 Marked
## 5: 36 Treated Male 46 Marked
## 6: 23 Treated Male 58 Marked

Now we will check the format of each column.

str(df)

## Classes 'data.table' and 'data.frame': 84 obs. of 5 variables:
## $ ID : int 57 46 77 17 36 23 75 39 33 55 ...
## $ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
## $ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
## $ Age : int 27 29 30 32 46 58 59 59 63 63 ...
## $ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>

2 columns have factor type, one has ordinal type.

ordinal variable :

• can take a limited number of values (like factor) ;

• these values are ordered (unlike factor). Here these ordered values are: Marked > Some >
None
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Creation of new features based on old ones

We will add some new categorical features to see if it helps.

Grouping per 10 years

For the first feature we create groups of age by rounding the real age.

Note that we transform it to factor so the algorithm treat these age groups as independent values.

Therefore, 20 is not closer to 30 than 60. To make it short, the distance between ages is lost in this transformation.

head(df[,AgeDiscret := as.factor(round(Age/10,0))])

## ID Treatment Sex Age Improved AgeDiscret
## 1: 57 Treated Male 27 Some 3
## 2: 46 Treated Male 29 None 3
## 3: 77 Treated Male 30 None 3
## 4: 17 Treated Male 32 Marked 3
## 5: 36 Treated Male 46 Marked 5
## 6: 23 Treated Male 58 Marked 6

Random split in two groups

Following is an even stronger simplification of the real age with an arbitrary split at 30 years old. I choose this value
based on nothing. We will see later if simplifying the information based on arbitrary values is a good strategy (you
may already have an idea of how well it will work. . . ).

head(df[,AgeCat:= as.factor(ifelse(Age > 30, "Old", "Young"))])

## ID Treatment Sex Age Improved AgeDiscret AgeCat
## 1: 57 Treated Male 27 Some 3 Young
## 2: 46 Treated Male 29 None 3 Young
## 3: 77 Treated Male 30 None 3 Young
## 4: 17 Treated Male 32 Marked 3 Old
## 5: 36 Treated Male 46 Marked 5 Old
## 6: 23 Treated Male 58 Marked 6 Old

Risks in adding correlated features

These new features are highly correlated to the Age feature because they are simple transformations of this feature.

For many machine learning algorithms, using correlated features is not a good idea. It may sometimes make prediction
less accurate, and most of the time make interpretation of the model almost impossible. GLM, for instance, assumes
that the features are uncorrelated.

Fortunately, decision tree algorithms (including boosted trees) are very robust to these features. Therefore we have
nothing to do to manage this situation.

Cleaning data

We remove ID as there is nothing to learn from this feature (it would just add some noise).
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df[,ID:=NULL]

We will list the different values for the column Treatment:

levels(df[,Treatment])

## [1] "Placebo" "Treated"

One-hot encoding

Next step, we will transform the categorical data to dummy variables. This is the one-hot encoding step.

The purpose is to transform each value of each categorical feature in a binary feature {0, 1}.

For example, the column Treatmentwill be replaced by two columns, Placebo, and Treated. Each of them will
be binary. Therefore, an observation which has the value Placebo in column Treatment before the transformation
will have after the transformation the value 1 in the new column Placebo and the value 0 in the new column
Treated. The column Treatment will disappear during the one-hot encoding.

Column Improved is excluded because it will be our label column, the one we want to predict.

sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
head(sparse_matrix)

## 6 x 10 sparse Matrix of class "dgCMatrix"
##
## 1 . 1 1 27 1 . . . . 1
## 2 . 1 1 29 1 . . . . 1
## 3 . 1 1 30 1 . . . . 1
## 4 . 1 1 32 1 . . . . .
## 5 . 1 1 46 . . 1 . . .
## 6 . 1 1 58 . . . 1 . .

Formulae Improved~.-1 used above means transform all categorical features but column Improved
to binary values. The -1 is here to remove the first column which is full of 1 (this column is generated
by the conversion). For more information, you can type ?sparse.model.matrix in the console.

Create the output numeric vector (not as a sparse Matrix):

output_vector = df[,Improved] == "Marked"

1. set Y vector to 0;

2. set Y to 1 for rows where Improved == Marked is TRUE ;

3. return Y vector.

Build the model

The code below is very usual. For more information, you can look at the documentation of xgboost function (or at
the vignette Xgboost presentation).

bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 4,
eta = 1, nthread = 2, nround = 10,objective = "binary:logistic")
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## [0] train-error:0.202381
## [1] train-error:0.166667
## [2] train-error:0.166667
## [3] train-error:0.166667
## [4] train-error:0.154762
## [5] train-error:0.154762
## [6] train-error:0.154762
## [7] train-error:0.166667
## [8] train-error:0.166667
## [9] train-error:0.166667

You can see some train-error: 0.XXXXX lines followed by a number. It decreases. Each line shows how well
the model explains your data. Lower is better.

A model which fits too well may overfit (meaning it copy/paste too much the past, and won’t be that good to predict
the future).

Here you can see the numbers decrease until line 7 and then increase.

It probably means we are overfitting. To fix that I should reduce the number of rounds to nround = 4.
I will let things like that because I don’t really care for the purpose of this example :-)

Feature importance

Measure feature importance

Build the feature importance data.table

In the code below, sparse_matrix@Dimnames[[2]] represents the column names of the sparse matrix. These
names are the original values of the features (remember, each binary column == one value of one categorical feature).

importance <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst)
head(importance)

## Feature Gain Cover Frequency
## 1: Age 0.622031651 0.67251706 0.67241379
## 2: TreatmentPlacebo 0.285750607 0.11916656 0.10344828
## 3: SexMale 0.048744054 0.04522027 0.08620690
## 4: AgeDiscret6 0.016604647 0.04784637 0.05172414
## 5: AgeDiscret3 0.016373791 0.08028939 0.05172414
## 6: AgeDiscret4 0.009270558 0.02858801 0.01724138

The column Gain provide the information we are looking for.

As you can see, features are classified by Gain.

Gain is the improvement in accuracy brought by a feature to the branches it is on. The idea is that before adding
a new split on a feature X to the branch there was some wrongly classified elements, after adding the split on this
feature, there are two new branches, and each of these branch is more accurate (one branch saying if your observation
is on this branch then it should be classified as 1, and the other branch saying the exact opposite).

Cover measures the relative quantity of observations concerned by a feature.

Frequency is a simpler way to measure the Gain. It just counts the number of times a feature is used in all generated
trees. You should not use it (unless you know why you want to use it).
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Improvement in the interpretability of feature importance data.table

We can go deeper in the analysis of the model. In the data.table above, we have discovered which features counts
to predict if the illness will go or not. But we don’t yet know the role of these features. For instance, one of the
question we may want to answer would be: does receiving a placebo treatment helps to recover from the illness?

One simple solution is to count the co-occurrences of a feature and a class of the classification.

For that purpose we will execute the same function as above but using two more parameters, data and label.

importanceRaw <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model =
→˓bst, data = sparse_matrix, label = output_vector)

# Cleaning for better display
importanceClean <- importanceRaw[,`:=`(Cover=NULL, Frequency=NULL)]

head(importanceClean)

## Feature Split Gain RealCover RealCover %
## 1: TreatmentPlacebo -1.00136e-05 0.28575061 7 0.2500000
## 2: Age 61.5 0.16374034 12 0.4285714
## 3: Age 39 0.08705750 8 0.2857143
## 4: Age 57.5 0.06947553 11 0.3928571
## 5: SexMale -1.00136e-05 0.04874405 4 0.1428571
## 6: Age 53.5 0.04620627 10 0.3571429

In the table above we have removed two not needed columns and select only the first lines.

First thing you notice is the new column Split. It is the split applied to the feature on a branch of one of the tree.
Each split is present, therefore a feature can appear several times in this table. Here we can see the feature Age is used
several times with different splits.

How the split is applied to count the co-occurrences? It is always <. For instance, in the second line, we measure the
number of persons under 61.5 years with the illness gone after the treatment.

The two other new columns are RealCover and RealCover %. In the first column it measures the number of
observations in the dataset where the split is respected and the label marked as 1. The second column is the percentage
of the whole population that RealCover represents.

Therefore, according to our findings, getting a placebo doesn’t seem to help but being younger than 61 years may help
(seems logic).

You may wonder how to interpret the < 1.00001 on the first line. Basically, in a sparse Matrix, there
is no 0, therefore, looking for one hot-encoded categorical observations validating the rule < 1.00001
is like just looking for 1 for this feature.

Plotting the feature importance

All these things are nice, but it would be even better to plot the results.

xgb.plot.importance(importance_matrix = importanceRaw)

## Error in xgb.plot.importance(importance_matrix = importanceRaw): Importance matrix
→˓is not correct (column names issue)

Feature have automatically been divided in 2 clusters: the interesting features. . . and the others.
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Depending of the dataset and the learning parameters you may have more than two clusters. Default value
is to limit them to 10, but you can increase this limit. Look at the function documentation for more
information.

According to the plot above, the most important features in this dataset to predict if the treatment will work are :

• the Age ;

• having received a placebo or not ;

• the sex is third but already included in the not interesting features group ;

• then we see our generated features (AgeDiscret). We can see that their contribution is very low.

Do these results make sense?

Let’s check some Chi2 between each of these features and the label.

Higher Chi2 means better correlation.

c2 <- chisq.test(df$Age, output_vector)
print(c2)

##
## Pearson's Chi-squared test
##
## data: df$Age and output_vector
## X-squared = 35.475, df = 35, p-value = 0.4458

Pearson correlation between Age and illness disappearing is 35.48.

c2 <- chisq.test(df$AgeDiscret, output_vector)
print(c2)

##
## Pearson's Chi-squared test
##
## data: df$AgeDiscret and output_vector
## X-squared = 8.2554, df = 5, p-value = 0.1427

Our first simplification of Age gives a Pearson correlation is 8.26.

c2 <- chisq.test(df$AgeCat, output_vector)
print(c2)

##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: df$AgeCat and output_vector
## X-squared = 2.3571, df = 1, p-value = 0.1247

The perfectly random split I did between young and old at 30 years old have a low correlation of 2.36. It’s a result we
may expect as may be in my mind > 30 years is being old (I am 32 and starting feeling old, this may explain that), but
for the illness we are studying, the age to be vulnerable is not the same.

Morality: don’t let your gut lower the quality of your model.

In data science expression, there is the word science :-)

1.8. XGBoost R Package 77



xgboost, Release 0.72.1

Conclusion

As you can see, in general destroying information by simplifying it won’t improve your model. Chi2 just demonstrates
that.

But in more complex cases, creating a new feature based on existing one which makes link with the outcome more
obvious may help the algorithm and improve the model.

The case studied here is not enough complex to show that. Check Kaggle website for some challenging datasets.
However it’s almost always worse when you add some arbitrary rules.

Moreover, you can notice that even if we have added some not useful new features highly correlated with other features,
the boosting tree algorithm have been able to choose the best one, which in this case is the Age.

Linear models may not be that smart in this scenario.

Special Note: What about Random Forests™?

As you may know, Random Forests™ algorithm is cousin with boosting and both are part of the ensemble learning
family.

Both train several decision trees for one dataset. The main difference is that in Random Forests™, trees are independent
and in boosting, the tree N+1 focus its learning on the loss (<=> what has not been well modeled by the tree N).

This difference have an impact on a corner case in feature importance analysis: the correlated features.

Imagine two features perfectly correlated, feature A and feature B. For one specific tree, if the algorithm needs one of
them, it will choose randomly (true in both boosting and Random Forests™).

However, in Random Forests™ this random choice will be done for each tree, because each tree is independent from
the others. Therefore, approximatively, depending of your parameters, 50% of the trees will choose feature A and
the other 50% will choose feature B. So the importance of the information contained in A and B (which is the same,
because they are perfectly correlated) is diluted in A and B. So you won’t easily know this information is important to
predict what you want to predict! It is even worse when you have 10 correlated features. . .

In boosting, when a specific link between feature and outcome have been learned by the algorithm, it will try to not
refocus on it (in theory it is what happens, reality is not always that simple). Therefore, all the importance will be on
feature A or on feature B (but not both). You will know that one feature have an important role in the link between the
observations and the label. It is still up to you to search for the correlated features to the one detected as important if
you need to know all of them.

If you want to try Random Forests™ algorithm, you can tweak Xgboost parameters!

Warning: this is still an experimental parameter.

For instance, to compute a model with 1000 trees, with a 0.5 factor on sampling rows and columns:

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test

#Random Forest™ - 1000 trees
bst <- xgboost(data = train$data, label = train$label, max.depth = 4, num_parallel_
→˓tree = 1000, subsample = 0.5, colsample_bytree =0.5, nround = 1, objective =
→˓"binary:logistic")

## [0] train-error:0.002150
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#Boosting - 3 rounds
bst <- xgboost(data = train$data, label = train$label, max.depth = 4, nround = 3,
→˓objective = "binary:logistic")

## [0] train-error:0.006142
## [1] train-error:0.006756
## [2] train-error:0.001228

Note that the parameter round is set to 1.

Random Forests™ is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford
Systems for the commercial release of the software.

1.9 XGBoost JVM Package

You have found the XGBoost JVM Package!

1.9.1 Installation

Installation from source

Building XGBoost4J using Maven requires Maven 3 or newer, Java 7+ and CMake 3.2+ for compiling the JNI bind-
ings.

Before you install XGBoost4J, you need to define environment variable JAVA_HOME as your JDK directory to ensure
that your compiler can find jni.h correctly, since XGBoost4J relies on JNI to implement the interaction between the
JVM and native libraries.

After your JAVA_HOME is defined correctly, it is as simple as run mvn package under jvm-packages directory to
install XGBoost4J. You can also skip the tests by running mvn -DskipTests=true package, if you are sure
about the correctness of your local setup.

To publish the artifacts to your local maven repository, run

mvn install

Or, if you would like to skip tests, run

mvn -DskipTests install

This command will publish the xgboost binaries, the compiled java classes as well as the java sources to your local
repository. Then you can use XGBoost4J in your Java projects by including the following dependency in pom.xml:

<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j</artifactId>
<version>latest_source_version_num</version>

</dependency>

For sbt, please add the repository and dependency in build.sbt as following:
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resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/
→˓repository"

"ml.dmlc" % "xgboost4j" % "latest_source_version_num"

If you want to use XGBoost4J-Spark, replace xgboost4j with xgboost4j-spark.

Note: Spark 2.0 Required

After integrating with Dataframe/Dataset APIs of Spark 2.0, XGBoost4J-Spark only supports compile with Spark 2.x.
You can build XGBoost4J-Spark as a component of XGBoost4J by running mvn package, and you can specify
the version of spark with mvn -Dspark.version=2.0.0 package. (To continue working with Spark 1.x, the
users are supposed to update pom.xml by modifying the properties like spark.version, scala.version, and
scala.binary.version. Users also need to change the implementation by replacing SparkSession with
SQLContext and the type of API parameters from Dataset[_] to Dataframe)

Installation from maven repo

Access release version

Listing 8: maven

<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j</artifactId>
<version>latest_version_num</version>

</dependency>

Listing 9: sbt

"ml.dmlc" % "xgboost4j" % "latest_version_num"

This will checkout the latest stable version from the Maven Central.

For the latest release version number, please check here.

if you want to use XGBoost4J-Spark, replace xgboost4j with xgboost4j-spark.

Access SNAPSHOT version

You need to add GitHub as repo:

Listing 10: maven

<repository>
<id>GitHub Repo</id>
<name>GitHub Repo</name>
<url>https://raw.githubusercontent.com/CodingCat/xgboost/maven-repo/</url>

</repository>
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Listing 11: sbt

resolvers += "GitHub Repo" at "https://raw.githubusercontent.com/CodingCat/xgboost/
→˓maven-repo/"

Then add dependency as following:

Listing 12: maven

<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j</artifactId>
<version>latest_version_num</version>

</dependency>

Listing 13: sbt

"ml.dmlc" % "xgboost4j" % "latest_version_num"

For the latest release version number, please check here.

Note: Windows not supported by published JARs

The published JARs from the Maven Central and GitHub currently only supports Linux and MacOS. Windows users
should consider building XGBoost4J / XGBoost4J-Spark from the source. Alternatively, checkout pre-built JARs from
criteo-forks/xgboost-jars.

Enabling OpenMP for Mac OS

If you are on Mac OS and using a compiler that supports OpenMP, you need to go to the file xgboost/
jvm-packages/create_jni.py and comment out the line

CONFIG["USE_OPENMP"] = "OFF"

in order to get the benefit of multi-threading.

1.9.2 Contents

Getting Started with XGBoost4J

This tutorial introduces Java API for XGBoost.

Data Interface

Like the XGBoost python module, XGBoost4J uses DMatrix to handle data. LIBSVM txt format file, sparse matrix
in CSR/CSC format, and dense matrix are supported.

• The first step is to import DMatrix:

import ml.dmlc.xgboost4j.java.DMatrix;
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• Use DMatrix constructor to load data from a libsvm text format file:

DMatrix dmat = new DMatrix("train.svm.txt");

• Pass arrays to DMatrix constructor to load from sparse matrix.

Suppose we have a sparse matrix

1 0 2 0
4 0 0 3
3 1 2 0

We can express the sparse matrix in Compressed Sparse Row (CSR) format:

long[] rowHeaders = new long[] {0,2,4,7};
float[] data = new float[] {1f,2f,4f,3f,3f,1f,2f};
int[] colIndex = new int[] {0,2,0,3,0,1,2};
int numColumn = 4;
DMatrix dmat = new DMatrix(rowHeaders, colIndex, data, DMatrix.SparseType.CSR,
→˓numColumn);

. . . or in Compressed Sparse Column (CSC) format:

long[] colHeaders = new long[] {0,3,4,6,7};
float[] data = new float[] {1f,4f,3f,1f,2f,2f,3f};
int[] rowIndex = new int[] {0,1,2,2,0,2,1};
int numRow = 3;
DMatrix dmat = new DMatrix(colHeaders, rowIndex, data, DMatrix.SparseType.CSC,
→˓numRow);

• You may also load your data from a dense matrix. Let’s assume we have a matrix of form

1 2
3 4
5 6

Using row-major layout, we specify the dense matrix as follows:

float[] data = new float[] {1f,2f,3f,4f,5f,6f};
int nrow = 3;
int ncol = 2;
float missing = 0.0f;
DMatrix dmat = new DMatrix(data, nrow, ncol, missing);

• To set weight:

float[] weights = new float[] {1f,2f,1f};
dmat.setWeight(weights);

Setting Parameters

To set parameters, parameters are specified as a Map:

Map<String, Object> params = new HashMap<String, Object>() {
{
put("eta", 1.0);

(continues on next page)
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(continued from previous page)

put("max_depth", 2);
put("silent", 1);
put("objective", "binary:logistic");
put("eval_metric", "logloss");

}
};

Training Model

With parameters and data, you are able to train a booster model.

• Import Booster and XGBoost:

import ml.dmlc.xgboost4j.java.Booster;
import ml.dmlc.xgboost4j.java.XGBoost;

• Training

DMatrix trainMat = new DMatrix("train.svm.txt");
DMatrix validMat = new DMatrix("valid.svm.txt");
// Specify a watch list to see model accuracy on data sets
Map<String, DMatrix> watches = new HashMap<String, DMatrix>() {
{

put("train", trainMat);
put("test", testMat);

}
};
int nround = 2;
Booster booster = XGBoost.train(trainMat, params, nround, watches, null, null);

• Saving model

After training, you can save model and dump it out.

booster.saveModel("model.bin");

• Generaing model dump with feature map

// dump without feature map
String[] model_dump = booster.getModelDump(null, false);
// dump with feature map
String[] model_dump_with_feature_map = booster.getModelDump("featureMap.txt",
→˓false);

• Load a model

Booster booster = XGBoost.loadModel("model.bin");

Prediction

After training and loading a model, you can use it to make prediction for other data. The result will be a two-
dimension float array (nsample, nclass); for predictLeaf(), the result would be of shape (nsample,
nclass*ntrees).
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DMatrix dtest = new DMatrix("test.svm.txt");
// predict
float[][] predicts = booster.predict(dtest);
// predict leaf
float[][] leafPredicts = booster.predictLeaf(dtest, 0);

XGBoost4J Java API

XGBoost4J Scala API

XGBoost4J-Spark Scala API

XGBoost4J-Flink Scala API

1.10 XGBoost.jl

See XGBoost.jl Project page.

1.11 XGBoost Command Line version

See XGBoost Command Line walkthrough.

1.12 Contribute to XGBoost

XGBoost has been developed and used by a group of active community members. Everyone is more than welcome to
contribute. It is a way to make the project better and more accessible to more users.

• Please add your name to CONTRIBUTORS.md after your patch has been merged.

• Please also update NEWS.md to add note on your changes to the API or XGBoost documentation.

Guidelines

• Submit Pull Request

• Git Workflow Howtos

– How to resolve conflict with master

– How to combine multiple commits into one

– What is the consequence of force push

• Documents

• Testcases

• Examples

• Core Library

• Python Package

• R Package
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1.12.1 Submit Pull Request

• Before submit, please rebase your code on the most recent version of master, you can do it by

git remote add upstream https://github.com/dmlc/xgboost
git fetch upstream
git rebase upstream/master

• If you have multiple small commits, it might be good to merge them together(use git rebase then squash) into
more meaningful groups.

• Send the pull request!

– Fix the problems reported by automatic checks

– If you are contributing a new module, consider add a testcase in tests.

1.12.2 Git Workflow Howtos

How to resolve conflict with master

• First rebase to most recent master

# The first two steps can be skipped after you do it once.
git remote add upstream https://github.com/dmlc/xgboost
git fetch upstream
git rebase upstream/master

• The git may show some conflicts it cannot merge, say conflicted.py.

– Manually modify the file to resolve the conflict.

– After you resolved the conflict, mark it as resolved by

git add conflicted.py

• Then you can continue rebase by

git rebase --continue

• Finally push to your fork, you may need to force push here.

git push --force

How to combine multiple commits into one

Sometimes we want to combine multiple commits, especially when later commits are only fixes to previous ones, to
create a PR with set of meaningful commits. You can do it by following steps.

• Before doing so, configure the default editor of git if you haven’t done so before.

git config core.editor the-editor-you-like

• Assume we want to merge last 3 commits, type the following commands

git rebase -i HEAD~3

1.12. Contribute to XGBoost 85

https://github.com/dmlc/xgboost/tree/master/tests


xgboost, Release 0.72.1

• It will pop up an text editor. Set the first commit as pick, and change later ones to squash.

• After you saved the file, it will pop up another text editor to ask you modify the combined commit message.

• Push the changes to your fork, you need to force push.

git push --force

What is the consequence of force push

The previous two tips requires force push, this is because we altered the path of the commits. It is fine to force push to
your own fork, as long as the commits changed are only yours.

1.12.3 Documents

• Documentation is built using sphinx.

• Each document is written in reStructuredText.

• You can build document locally to see the effect.

1.12.4 Testcases

• All the testcases are in tests.

• We use python nose for python test cases.

1.12.5 Examples

• Usecases and examples will be in demo.

• We are super excited to hear about your story, if you have blogposts, tutorials code solutions using XGBoost,
please tell us and we will add a link in the example pages.

1.12.6 Core Library

• Follow Google style for C++.

• Use C++11 features such as smart pointers, braced initializers, lambda functions, and std::thread.

• We use Doxygen to document all the interface code.

• You can reproduce the linter checks by running make lint

1.12.7 Python Package

• Always add docstring to the new functions in numpydoc format.

• You can reproduce the linter checks by typing make lint
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1.12.8 R Package

Code Style

• We follow Google’s C++ Style guide for C++ code.

– This is mainly to be consistent with the rest of the project.

– Another reason is we will be able to check style automatically with a linter.

• You can check the style of the code by typing the following command at root folder.

make rcpplint

• When needed, you can disable the linter warning of certain line with `// NOLINT(*)` comments.

• We use roxygen for documenting the R package.

Rmarkdown Vignettes

Rmarkdown vignettes are placed in R-package/vignettes. These Rmarkdown files are not compiled. We host the
compiled version on doc/R-package.

The following steps are followed to add a new Rmarkdown vignettes:

• Add the original rmarkdown to R-package/vignettes.

• Modify doc/R-package/Makefile to add the markdown files to be build.

• Clone the dmlc/web-data repo to folder doc.

• Now type the following command on doc/R-package:

make the-markdown-to-make.md

• This will generate the markdown, as well as the figures in doc/web-data/xgboost/knitr.

• Modify the doc/R-package/index.md to point to the generated markdown.

• Add the generated figure to the dmlc/web-data repo.

– If you already cloned the repo to doc, this means git add

• Create PR for both the markdown and dmlc/web-data.

• You can also build the document locally by typing the following command at the doc directory:

make html

The reason we do this is to avoid exploded repo size due to generated images.

R package versioning

Since version 0.6.4.3, we have adopted a versioning system that uses x.y.z (or core_major.core_minor.
cran_release) format for CRAN releases and an x.y.z.p (or core_major.core_minor.cran_release.
patch) format for development patch versions. This approach is similar to the one described in Yihui Xie’s blog post
on R Package Versioning, except we need an additional field to accomodate the x.y core library version.

Each new CRAN release bumps up the 3rd field, while developments in-between CRAN releases would be marked
by an additional 4th field on the top of an existing CRAN release version. Some additional consideration is needed
when the core library version changes. E.g., after the core changes from 0.6 to 0.7, the R package development version
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would become 0.7.0.1, working towards a 0.7.1 CRAN release. The 0.7.0 would not be released to CRAN, unless it
would require almost no additional development.

Registering native routines in R

According to R extension manual, it is good practice to register native routines and to disable symbol search. When
any changes or additions are made to the C++ interface of the R package, please make corresponding changes in
src/init.c as well.
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