
xgboost
Release 1.2.1

xgboost developers

Nov 23, 2020

CONTENTS

1 Contents 3
1.1 Installation Guide . 3
1.2 Get Started with XGBoost . 12
1.3 XGBoost Tutorials . 13
1.4 Frequently Asked Questions . 57
1.5 XGBoost GPU Support . 58
1.6 XGBoost Parameters . 63
1.7 XGBoost Python Package . 73
1.8 XGBoost R Package . 123
1.9 XGBoost JVM Package . 141
1.10 XGBoost.jl . 159
1.11 XGBoost C Package . 159
1.12 XGBoost C++ API . 159
1.13 XGBoost Command Line version . 160
1.14 Contribute to XGBoost . 160

Python Module Index 173

Index 175

i

ii

xgboost, Release 1.2.1

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.
It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree
boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same
code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

CONTENTS 1

https://en.wikipedia.org/wiki/Gradient_boosting

xgboost, Release 1.2.1

2 CONTENTS

CHAPTER

ONE

CONTENTS

1.1 Installation Guide

Note: Pre-built binary wheel for Python

If you are planning to use Python, consider installing XGBoost from a pre-built binary wheel, available from Python
Package Index (PyPI). You may download and install it by running

Ensure that you are downloading one of the following:
* xgboost-{version}-py2.py3-none-manylinux1_x86_64.whl
* xgboost-{version}-py2.py3-none-win_amd64.whl
pip3 install xgboost

• The binary wheel will support GPU algorithms (gpu_hist) on machines with NVIDIA GPUs. Please note that
training with multiple GPUs is only supported for Linux platform. See XGBoost GPU Support.

• Currently, we provide binary wheels for 64-bit Linux, macOS and Windows.

• Nightly builds are available. You can now run

pip install https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds/xgboost-
→˓[version]+[commithash]-py2.py3-none-manylinux1_x86_64.whl

to install the nightly build with the given commit hash. See this page to see the list of all nightly builds.

1.1.1 Building XGBoost from source

This page gives instructions on how to build and install XGBoost from scratch on various systems.

Note: Use of Git submodules

XGBoost uses Git submodules to manage dependencies. So when you clone the repo, remember to specify
--recursive option:

git clone --recursive https://github.com/dmlc/xgboost

For windows users who use github tools, you can open the git shell and type the following command:

git submodule init
git submodule update

3

https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds/list.html

xgboost, Release 1.2.1

Please refer to Trouble Shooting section first if you have any problem during installation. If the instructions do not
work for you, please feel free to ask questions at the user forum.

Contents

• Installation Guide

– Building XGBoost from source

– Building the Shared Library

* Building on Linux distributions

* Building on OSX

· Install with pip: simple method

· Build from the source code - advanced method

* Building on Windows

· Compile XGBoost with Microsoft Visual Studio

* Building with GPU support

* Makefiles

* Python Package Installation

· Building XGBoost library for Python for Windows with MinGW-w64 (Advanced)

* R Package Installation

· Installing pre-packaged version

· Installing the development version (Linux / Mac OSX)

· Installing the development version with Visual Studio

· Installing R package with GPU support

* Trouble Shooting

* Building the Documentation

1.1.2 Building the Shared Library

Our goal is to build the shared library:

• On Linux/OSX the target library is libxgboost.so

• On Windows the target library is xgboost.dll

This shared library is used by different language bindings (with some additions depending on the binding you choose).
For building language specific package, see corresponding sections in this document. The minimal building require-
ment is

• A recent C++ compiler supporting C++11 (g++-5.0 or higher)

• CMake 3.12 or higher.

For a list of CMake options, see #-- Options in CMakeLists.txt on top level of source tree.

4 Chapter 1. Contents

https://discuss.xgboost.ai

xgboost, Release 1.2.1

Building on Linux distributions

On Ubuntu, one builds XGBoost by running CMake:

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
mkdir build
cd build
cmake ..
make -j$(nproc)

Building on OSX

Install with pip: simple method

First, obtain the OpenMP library (libomp) with Homebrew (https://brew.sh/) to enable multi-threading (i.e. using
multiple CPU threads for training):

brew install libomp

Then install XGBoost with pip:

pip3 install xgboost

You might need to run the command with --user flag if you run into permission errors.

Build from the source code - advanced method

Obtain libomp from Homebrew:

brew install libomp

Now clone the repository:

git clone --recursive https://github.com/dmlc/xgboost

Create the build/ directory and invoke CMake. After invoking CMake, you can build XGBoost with make:

mkdir build
cd build
cmake ..
make -j4

You may now continue to Python Package Installation.

1.1. Installation Guide 5

https://brew.sh/

xgboost, Release 1.2.1

Building on Windows

You need to first clone the XGBoost repo with --recursive option, to clone the submodules. We recommend you
use Git for Windows, as it comes with a standard Bash shell. This will highly ease the installation process.

git submodule init
git submodule update

XGBoost support compilation with Microsoft Visual Studio and MinGW.

Compile XGBoost with Microsoft Visual Studio

To build with Visual Studio, we will need CMake. Make sure to install a recent version of CMake. Then run the
following from the root of the XGBoost directory:

mkdir build
cd build
cmake .. -G"Visual Studio 14 2015 Win64"
for VS15: cmake .. -G"Visual Studio 15 2017" -A x64
for VS16: cmake .. -G"Visual Studio 16 2019" -A x64
cmake --build . --config Release

This specifies an out of source build using the Visual Studio 64 bit generator. (Change the -G option appropriately if
you have a different version of Visual Studio installed.)

After the build process successfully ends, you will find a xgboost.dll library file inside ./lib/ folder.

Building with GPU support

XGBoost can be built with GPU support for both Linux and Windows using CMake. GPU support works with the
Python package as well as the CLI version. See Installing R package with GPU support for special instructions for R.

An up-to-date version of the CUDA toolkit is required.

From the command line on Linux starting from the XGBoost directory:

mkdir build
cd build
cmake .. -DUSE_CUDA=ON
make -j4

Note: Enabling distributed GPU training

By default, distributed GPU training is disabled and only a single GPU will be used. To enable distributed GPU
training, set the option USE_NCCL=ON. Distributed GPU training depends on NCCL2, available at this link. Since
NCCL2 is only available for Linux machines, distributed GPU training is available only for Linux.

mkdir build
cd build
cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DNCCL_ROOT=/path/to/nccl2
make -j4

On Windows, run CMake as follows:

6 Chapter 1. Contents

https://git-for-windows.github.io/
https://developer.nvidia.com/nccl

xgboost, Release 1.2.1

mkdir build
cd build
cmake .. -G"Visual Studio 14 2015 Win64" -DUSE_CUDA=ON

(Change the -G option appropriately if you have a different version of Visual Studio installed.)

Note: Visual Studio 2017 Win64 Generator may not work

Choosing the Visual Studio 2017 generator may cause compilation failure. When it happens, specify the 2015 compiler
by adding the -T option:

cmake .. -G"Visual Studio 15 2017 Win64" -T v140,cuda=8.0 -DUSE_CUDA=ON

To speed up compilation, the compute version specific to your GPU could be passed to cmake as, e.g.,
-DGPU_COMPUTE_VER=50. The above cmake configuration run will create an xgboost.sln solution file in
the build directory. Build this solution in release mode as a x64 build, either from Visual studio or from command
line:

cmake --build . --target xgboost --config Release

To speed up compilation, run multiple jobs in parallel by appending option -- /MP.

Makefiles

It’s only used for creating shorthands for running linters, performing packaging tasks etc. So the remaining makefiles
are legacy.

Python Package Installation

The Python package is located at python-package/. There are several ways to build and install the package from
source:

1. Use Python setuptools directly

The XGBoost Python package supports most of the setuptools commands, here is a list of tested commands:

python setup.py install # Install the XGBoost to your current Python environment.
python setup.py build # Build the Python package.
python setup.py build_ext # Build only the C++ core.
python setup.py sdist # Create a source distribution
python setup.py bdist # Create a binary distribution
python setup.py bdist_wheel # Create a binary distribution with wheel format

Running python setup.py install will compile XGBoost using default CMake flags. For passing additional
compilation options, append the flags to the command. For example, to enable CUDA acceleration and NCCL (dis-
tributed GPU) support:

python setup.py install --use-cuda --use-nccl

Please refer to setup.py for a complete list of avaiable options. Some other options used for development are only
available for using CMake directly. See next section on how to use CMake with setuptools manually.

You can install the created distribution packages using pip. For example, after running sdist setuptools command,
a tar ball similar to xgboost-1.0.0.tar.gz will be created under the dist directory. Then you can install it by
invoking the following command under dist directory:

1.1. Installation Guide 7

xgboost, Release 1.2.1

under python-package directory
cd dist
pip install ./xgboost-1.0.0.tar.gz

For details about these commands, please refer to the official document of setuptools, or just Google “how to in-
stall Python package from source”. XGBoost Python package follows the general convention. Setuptools is usually
available with your Python distribution, if not you can install it via system command. For example on Debian or
Ubuntu:

sudo apt-get install python-setuptools

For cleaning up the directory after running above commands, python setup.py clean is not sufficient. After
copying out the build result, simply running git clean -xdf under python-package is an efficient way to
remove generated cache files. If you find weird behaviors in Python build or running linter, it might be caused by those
cached files.

For using develop command (editable installation), see next section.

python setup.py develop # Create a editable installation.
pip install -e . # Same as above, but carried out by pip.

2. Build C++ core with CMake first

This is mostly for C++ developers who don’t want to go through the hooks in Python setuptools. You can build C++
library directly using CMake as described in above sections. After compilation, a shared object (or called dynamic
linked library, jargon depending on your platform) will appear in XGBoost’s source tree under lib/ directory. On
Linux distributions it’s lib/libxgboost.so. From there all Python setuptools commands will reuse that shared
object instead of compiling it again. This is especially convenient if you are using the editable installation, where the
installed package is simply a link to the source tree. We can perform rapid testing during development. Here is a
simple bash script does that:

Under xgboost source tree.
mkdir build
cd build
cmake ..
make -j$(nproc)
cd ../python-package
pip install -e . # or equivalently python setup.py develop

Building XGBoost library for Python for Windows with MinGW-w64 (Advanced)

Windows versions of Python are built with Microsoft Visual Studio. Usually Python binary modules are built with the
same compiler the interpreter is built with. However, you may not be able to use Visual Studio, for following reasons:

1. VS is proprietary and commercial software. Microsoft provides a freeware “Community” edition, but its licens-
ing terms impose restrictions as to where and how it can be used.

2. Visual Studio contains telemetry, as documented in Microsoft Visual Studio Licensing Terms. Running software
with telemetry may be against the policy of your organization.

So you may want to build XGBoost with GCC own your own risk. This presents some difficulties because MSVC
uses Microsoft runtime and MinGW-w64 uses own runtime, and the runtimes have different incompatible memory
allocators. But in fact this setup is usable if you know how to deal with it. Here is some experience.

1. The Python interpreter will crash on exit if XGBoost was used. This is usually not a big issue.

2. -O3 is OK.

8 Chapter 1. Contents

https://setuptools.readthedocs.io/en/latest/
https://visualstudio.microsoft.com/license-terms/mt736442/

xgboost, Release 1.2.1

3. -mtune=native is also OK.

4. Don’t use -march=native gcc flag. Using it causes the Python interpreter to crash if the DLL was actually
used.

5. You may need to provide the lib with the runtime libs. If mingw32/bin is not in PATH, build a wheel
(python setup.py bdist_wheel), open it with an archiver and put the needed dlls to the directory
where xgboost.dll is situated. Then you can install the wheel with pip.

R Package Installation

Installing pre-packaged version

You can install XGBoost from CRAN just like any other R package:

install.packages("xgboost")

Note: Using all CPU cores (threads) on Mac OSX

If you are using Mac OSX, you should first install OpenMP library (libomp) by running

brew install libomp

and then run install.packages("xgboost"). Without OpenMP, XGBoost will only use a single CPU core,
leading to suboptimal training speed.

Installing the development version (Linux / Mac OSX)

Make sure you have installed git and a recent C++ compiler supporting C++11 (See above sections for requirements
of building C++ core).

Due to the use of git-submodules, devtools::install_github can no longer be used to install the latest version
of R package. Thus, one has to run git to check out the code first:

git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
git submodule init
git submodule update
mkdir build
cd build
cmake .. -DR_LIB=ON
make -j$(nproc)
make install

If all fails, try Building the shared library to see whether a problem is specific to R package or not. Notice that the R
package is installed by CMake directly.

1.1. Installation Guide 9

xgboost, Release 1.2.1

Installing the development version with Visual Studio

On Windows, CMake with Visual C++ Build Tools (or Visual Studio) can be used to build the R package.

While not required, this build can be faster if you install the R package processx with install.
packages("processx").

Note: Setting correct PATH environment variable on Windows

If you are using Windows, make sure to include the right directories in the PATH environment variable.

• If you are using R 4.x with RTools 4.0: - C:\rtools40\usr\bin - C:\rtools40\mingw64\bin

• If you are using R 3.x with RTools 3.x:

– C:\Rtools\bin

– C:\Rtools\mingw_64\bin

Open the Command Prompt and navigate to the XGBoost directory, and then run the following commands. Make sure
to specify the correct R version.

cd C:\path\to\xgboost
mkdir build
cd build
cmake .. -G"Visual Studio 16 2019" -A x64 -DR_LIB=ON -DR_VERSION=4.0.0
cmake --build . --target install --config Release

Installing R package with GPU support

The procedure and requirements are similar as in Building with GPU support, so make sure to read it first.

On Linux, starting from the XGBoost directory type:

mkdir build
cd build
cmake .. -DUSE_CUDA=ON -DR_LIB=ON
make install -j$(nproc)

When default target is used, an R package shared library would be built in the build area. The install tar-
get, in addition, assembles the package files with this shared library under build/R-package and runs R CMD
INSTALL.

On Windows, CMake with Visual Studio has to be used to build an R package with GPU support. Rtools must also be
installed.

Note: Setting correct PATH environment variable on Windows

If you are using Windows, make sure to include the right directories in the PATH environment variable.

• If you are using R 4.x with RTools 4.0:

– C:\rtools40\usr\bin

– C:\rtools40\mingw64\bin

• If you are using R 3.x with RTools 3.x:

– C:\Rtools\bin

10 Chapter 1. Contents

xgboost, Release 1.2.1

– C:\Rtools\mingw_64\bin

Open the Command Prompt and navigate to the XGBoost directory, and then run the following commands. Make sure
to specify the correct R version.

cd C:\path\to\xgboost
mkdir build
cd build
cmake .. -G"Visual Studio 16 2019" -A x64 -DUSE_CUDA=ON -DR_LIB=ON -DR_VERSION=4.0.0
cmake --build . --target install --config Release

If CMake can’t find your R during the configuration step, you might provide the location of R to CMake like this:
-DLIBR_HOME="C:\Program Files\R\R-4.0.0".

If on Windows you get a “permission denied” error when trying to write to . . . Program Files/R/. . . during the package
installation, create a .Rprofile file in your personal home directory (if you don’t already have one in there), and
add a line to it which specifies the location of your R packages user library, like the following:

.libPaths(unique(c("C:/Users/USERNAME/Documents/R/win-library/3.4", .libPaths())))

You might find the exact location by running .libPaths() in R GUI or RStudio.

Trouble Shooting

1. Compile failed after git pull

Please first update the submodules, clean all and recompile:

git submodule update && make clean_all && make -j4

Building the Documentation

XGBoost uses Sphinx for documentation. To build it locally, you need a installed XGBoost with all its dependencies
along with:

• System dependencies

– git

– graphviz

• Python dependencies

– sphinx

– breathe

– guzzle_sphinx_theme

– recommonmark

– mock

– sh

– graphviz

– matplotlib

1.1. Installation Guide 11

https://www.sphinx-doc.org/en/stable/

xgboost, Release 1.2.1

Under xgboost/doc directory, run make <format> with <format> replaced by the format you want. For a
list of supported formats, run make help under the same directory.

1.2 Get Started with XGBoost

This is a quick start tutorial showing snippets for you to quickly try out XGBoost on the demo dataset on a binary
classification task.

1.2.1 Links to Other Helpful Resources

• See Installation Guide on how to install XGBoost.

• See Text Input Format on using text format for specifying training/testing data.

• See Tutorials for tips and tutorials.

• See Learning to use XGBoost by Examples for more code examples.

1.2.2 Python

import xgboost as xgb
read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
specify parameters via map
param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic' }
num_round = 2
bst = xgb.train(param, dtrain, num_round)
make prediction
preds = bst.predict(dtest)

1.2.3 R

load data
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
fit model
bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1,
→˓nrounds = 2,

nthread = 2, objective = "binary:logistic")
predict
pred <- predict(bst, test$data)

12 Chapter 1. Contents

https://github.com/dmlc/xgboost/tree/master/demo

xgboost, Release 1.2.1

1.2.4 Julia

using XGBoost
read data
train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))
test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))
fit model
num_round = 2
bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)
predict
pred = predict(bst, test_X)

1.2.5 Scala

import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost

object XGBoostScalaExample {
def main(args: Array[String]) {
// read trainining data, available at xgboost/demo/data
val trainData =

new DMatrix("/path/to/agaricus.txt.train")
// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap

// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
// run prediction
val predTrain = model.predict(trainData)
// save model to the file.
model.saveModel("/local/path/to/model")

}
}

1.3 XGBoost Tutorials

This section contains official tutorials inside XGBoost package. See Awesome XGBoost for more resources.

1.3.1 Introduction to Boosted Trees

XGBoost stands for “Extreme Gradient Boosting”, where the term “Gradient Boosting” originates from the paper
Greedy Function Approximation: A Gradient Boosting Machine, by Friedman. This is a tutorial on gradient boosted
trees, and most of the content is based on these slides by Tianqi Chen, the original author of XGBoost.

The gradient boosted trees has been around for a while, and there are a lot of materials on the topic. This tutorial
will explain boosted trees in a self-contained and principled way using the elements of supervised learning. We think
this explanation is cleaner, more formal, and motivates the model formulation used in XGBoost.

1.3. XGBoost Tutorials 13

https://github.com/dmlc/xgboost/tree/master/demo
http://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

xgboost, Release 1.2.1

Elements of Supervised Learning

XGBoost is used for supervised learning problems, where we use the training data (with multiple features) 𝑥𝑖 to predict
a target variable 𝑦𝑖. Before we learn about trees specifically, let us start by reviewing the basic elements in supervised
learning.

Model and Parameters

The model in supervised learning usually refers to the mathematical structure of by which the prediction 𝑦𝑖 is made
from the input 𝑥𝑖. A common example is a linear model, where the prediction is given as 𝑦𝑖 =

∑︀
𝑗 𝜃𝑗𝑥𝑖𝑗 , a linear

combination of weighted input features. The prediction value can have different interpretations, depending on the task,
i.e., regression or classification. For example, it can be logistic transformed to get the probability of positive class in
logistic regression, and it can also be used as a ranking score when we want to rank the outputs.

The parameters are the undetermined part that we need to learn from data. In linear regression problems, the param-
eters are the coefficients 𝜃. Usually we will use 𝜃 to denote the parameters (there are many parameters in a model, our
definition here is sloppy).

Objective Function: Training Loss + Regularization

With judicious choices for 𝑦𝑖, we may express a variety of tasks, such as regression, classification, and ranking. The
task of training the model amounts to finding the best parameters 𝜃 that best fit the training data 𝑥𝑖 and labels 𝑦𝑖. In
order to train the model, we need to define the objective function to measure how well the model fit the training data.

A salient characteristic of objective functions is that they consist two parts: training loss and regularization term:

obj(𝜃) = 𝐿(𝜃) + Ω(𝜃)

where 𝐿 is the training loss function, and Ω is the regularization term. The training loss measures how predictive our
model is with respect to the training data. A common choice of 𝐿 is the mean squared error, which is given by

𝐿(𝜃) =
∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖)
2

Another commonly used loss function is logistic loss, to be used for logistic regression:

𝐿(𝜃) =
∑︁
𝑖

[𝑦𝑖 ln(1 + 𝑒−𝑦𝑖) + (1 − 𝑦𝑖) ln(1 + 𝑒𝑦𝑖)]

The regularization term is what people usually forget to add. The regularization term controls the complexity of the
model, which helps us to avoid overfitting. This sounds a bit abstract, so let us consider the following problem in the
following picture. You are asked to fit visually a step function given the input data points on the upper left corner of
the image. Which solution among the three do you think is the best fit?

14 Chapter 1. Contents

xgboost, Release 1.2.1

The correct answer is marked in red. Please consider if this visually seems a reasonable fit to you. The general principle
is we want both a simple and predictive model. The tradeoff between the two is also referred as bias-variance tradeoff
in machine learning.

Why introduce the general principle?

The elements introduced above form the basic elements of supervised learning, and they are natural building blocks
of machine learning toolkits. For example, you should be able to describe the differences and commonalities between
gradient boosted trees and random forests. Understanding the process in a formalized way also helps us to understand
the objective that we are learning and the reason behind the heuristics such as pruning and smoothing.

1.3. XGBoost Tutorials 15

xgboost, Release 1.2.1

Decision Tree Ensembles

Now that we have introduced the elements of supervised learning, let us get started with real trees. To begin with, let
us first learn about the model choice of XGBoost: decision tree ensembles. The tree ensemble model consists of a
set of classification and regression trees (CART). Here’s a simple example of a CART that classifies whether someone
will like a hypothetical computer game X.

We classify the members of a family into different leaves, and assign them the score on the corresponding leaf. A
CART is a bit different from decision trees, in which the leaf only contains decision values. In CART, a real score is
associated with each of the leaves, which gives us richer interpretations that go beyond classification. This also allows
for a principled, unified approach to optimization, as we will see in a later part of this tutorial.

Usually, a single tree is not strong enough to be used in practice. What is actually used is the ensemble model, which
sums the prediction of multiple trees together.

Here is an example of a tree ensemble of two trees. The prediction scores of each individual tree are summed up to

16 Chapter 1. Contents

xgboost, Release 1.2.1

get the final score. If you look at the example, an important fact is that the two trees try to complement each other.
Mathematically, we can write our model in the form

𝑦𝑖 =

𝐾∑︁
𝑘=1

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ ℱ

where 𝐾 is the number of trees, 𝑓 is a function in the functional space ℱ , and ℱ is the set of all possible CARTs. The
objective function to be optimized is given by

obj(𝜃) =

𝑛∑︁
𝑖

𝑙(𝑦𝑖, 𝑦𝑖) +

𝐾∑︁
𝑘=1

Ω(𝑓𝑘)

Now here comes a trick question: what is the model used in random forests? Tree ensembles! So random forests and
boosted trees are really the same models; the difference arises from how we train them. This means that, if you write
a predictive service for tree ensembles, you only need to write one and it should work for both random forests and
gradient boosted trees. (See Treelite for an actual example.) One example of why elements of supervised learning
rock.

Tree Boosting

Now that we introduced the model, let us turn to training: How should we learn the trees? The answer is, as is always
for all supervised learning models: define an objective function and optimize it!

Let the following be the objective function (remember it always needs to contain training loss and regularization):

obj =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡)
𝑖) +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖)

Additive Training

The first question we want to ask: what are the parameters of trees? You can find that what we need to learn are those
functions 𝑓𝑖, each containing the structure of the tree and the leaf scores. Learning tree structure is much harder than
traditional optimization problem where you can simply take the gradient. It is intractable to learn all the trees at once.
Instead, we use an additive strategy: fix what we have learned, and add one new tree at a time. We write the prediction
value at step 𝑡 as 𝑦(𝑡)𝑖 . Then we have

𝑦
(0)
𝑖 = 0

𝑦
(1)
𝑖 = 𝑓1(𝑥𝑖) = 𝑦

(0)
𝑖 + 𝑓1(𝑥𝑖)

𝑦
(2)
𝑖 = 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖) = 𝑦

(1)
𝑖 + 𝑓2(𝑥𝑖)

. . .

𝑦
(𝑡)
𝑖 =

𝑡∑︁
𝑘=1

𝑓𝑘(𝑥𝑖) = 𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)

It remains to ask: which tree do we want at each step? A natural thing is to add the one that optimizes our objective.

obj(𝑡) =

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡)
𝑖) +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖)

=

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)) + Ω(𝑓𝑡) + constant

1.3. XGBoost Tutorials 17

http://treelite.io

xgboost, Release 1.2.1

If we consider using mean squared error (MSE) as our loss function, the objective becomes

obj(𝑡) =

𝑛∑︁
𝑖=1

(𝑦𝑖 − (𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)))

2 +

𝑡∑︁
𝑖=1

Ω(𝑓𝑖)

=

𝑛∑︁
𝑖=1

[2(𝑦
(𝑡−1)
𝑖 − 𝑦𝑖)𝑓𝑡(𝑥𝑖) + 𝑓𝑡(𝑥𝑖)

2] + Ω(𝑓𝑡) + constant

The form of MSE is friendly, with a first order term (usually called the residual) and a quadratic term. For other losses
of interest (for example, logistic loss), it is not so easy to get such a nice form. So in the general case, we take the
Taylor expansion of the loss function up to the second order:

obj(𝑡) =

𝑛∑︁
𝑖=1

[𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓

2
𝑡 (𝑥𝑖)] + Ω(𝑓𝑡) + constant

where the 𝑔𝑖 and ℎ𝑖 are defined as

𝑔𝑖 = 𝜕
𝑦
(𝑡−1)
𝑖

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖)

ℎ𝑖 = 𝜕2

𝑦
(𝑡−1)
𝑖

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖)

After we remove all the constants, the specific objective at step 𝑡 becomes

𝑛∑︁
𝑖=1

[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓

2
𝑡 (𝑥𝑖)] + Ω(𝑓𝑡)

This becomes our optimization goal for the new tree. One important advantage of this definition is that the value of the
objective function only depends on 𝑔𝑖 and ℎ𝑖. This is how XGBoost supports custom loss functions. We can optimize
every loss function, including logistic regression and pairwise ranking, using exactly the same solver that takes 𝑔𝑖 and
ℎ𝑖 as input!

Model Complexity

We have introduced the training step, but wait, there is one important thing, the regularization term! We need to
define the complexity of the tree Ω(𝑓). In order to do so, let us first refine the definition of the tree 𝑓(𝑥) as

𝑓𝑡(𝑥) = 𝑤𝑞(𝑥), 𝑤 ∈ 𝑅𝑇 , 𝑞 : 𝑅𝑑 → {1, 2, · · · , 𝑇}.

Here 𝑤 is the vector of scores on leaves, 𝑞 is a function assigning each data point to the corresponding leaf, and 𝑇 is
the number of leaves. In XGBoost, we define the complexity as

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤2
𝑗

Of course, there is more than one way to define the complexity, but this one works well in practice. The regularization
is one part most tree packages treat less carefully, or simply ignore. This was because the traditional treatment of
tree learning only emphasized improving impurity, while the complexity control was left to heuristics. By defining it
formally, we can get a better idea of what we are learning and obtain models that perform well in the wild.

18 Chapter 1. Contents

xgboost, Release 1.2.1

The Structure Score

Here is the magical part of the derivation. After re-formulating the tree model, we can write the objective value with
the 𝑡-th tree as:

obj(𝑡) ≈
𝑛∑︁

𝑖=1

[𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤

2
𝑞(𝑥𝑖)

] + 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤2
𝑗

=

𝑇∑︁
𝑗=1

[(
∑︁
𝑖∈𝐼𝑗

𝑔𝑖)𝑤𝑗 +
1

2
(
∑︁
𝑖∈𝐼𝑗

ℎ𝑖 + 𝜆)𝑤2
𝑗] + 𝛾𝑇

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is the set of indices of data points assigned to the 𝑗-th leaf. Notice that in the second line
we have changed the index of the summation because all the data points on the same leaf get the same score. We could
further compress the expression by defining 𝐺𝑗 =

∑︀
𝑖∈𝐼𝑗

𝑔𝑖 and 𝐻𝑗 =
∑︀

𝑖∈𝐼𝑗
ℎ𝑖:

obj(𝑡) =

𝑇∑︁
𝑗=1

[𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤2

𝑗] + 𝛾𝑇

In this equation, 𝑤𝑗 are independent with respect to each other, the form 𝐺𝑗𝑤𝑗 + 1
2 (𝐻𝑗 + 𝜆)𝑤2

𝑗 is quadratic and the
best 𝑤𝑗 for a given structure 𝑞(𝑥) and the best objective reduction we can get is:

𝑤*
𝑗 = − 𝐺𝑗

𝐻𝑗 + 𝜆

obj* = −1

2

𝑇∑︁
𝑗=1

𝐺2
𝑗

𝐻𝑗 + 𝜆
+ 𝛾𝑇

The last equation measures how good a tree structure 𝑞(𝑥) is.

If all this sounds a bit complicated, let’s take a look at the picture, and see how the scores can be calculated. Basically,
for a given tree structure, we push the statistics 𝑔𝑖 and ℎ𝑖 to the leaves they belong to, sum the statistics together, and
use the formula to calculate how good the tree is. This score is like the impurity measure in a decision tree, except that
it also takes the model complexity into account.

1.3. XGBoost Tutorials 19

xgboost, Release 1.2.1

Learn the tree structure

Now that we have a way to measure how good a tree is, ideally we would enumerate all possible trees and pick the
best one. In practice this is intractable, so we will try to optimize one level of the tree at a time. Specifically we try to
split a leaf into two leaves, and the score it gains is

𝐺𝑎𝑖𝑛 =
1

2

[︂
𝐺2

𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
− (𝐺𝐿 + 𝐺𝑅)2

𝐻𝐿 + 𝐻𝑅 + 𝜆

]︂
− 𝛾

This formula can be decomposed as 1) the score on the new left leaf 2) the score on the new right leaf 3) The score on
the original leaf 4) regularization on the additional leaf. We can see an important fact here: if the gain is smaller than
𝛾, we would do better not to add that branch. This is exactly the pruning techniques in tree based models! By using
the principles of supervised learning, we can naturally come up with the reason these techniques work :)

For real valued data, we usually want to search for an optimal split. To efficiently do so, we place all the instances in
sorted order, like the following picture.

A left to right scan is sufficient to calculate the structure score of all possible split solutions, and we can find the best
split efficiently.

Note: Limitation of additive tree learning

Since it is intractable to enumerate all possible tree structures, we add one split at a time. This approach works well
most of the time, but there are some edge cases that fail due to this approach. For those edge cases, training results
in a degenerate model because we consider only one feature dimension at a time. See Can Gradient Boosting Learn
Simple Arithmetic? for an example.

Final words on XGBoost

Now that you understand what boosted trees are, you may ask, where is the introduction for XGBoost? XGBoost is
exactly a tool motivated by the formal principle introduced in this tutorial! More importantly, it is developed with both
deep consideration in terms of systems optimization and principles in machine learning. The goal of this library
is to push the extreme of the computation limits of machines to provide a scalable, portable and accurate library.
Make sure you try it out, and most importantly, contribute your piece of wisdom (code, examples, tutorials) to the
community!

20 Chapter 1. Contents

http://mariofilho.com/can-gradient-boosting-learn-simple-arithmetic/
http://mariofilho.com/can-gradient-boosting-learn-simple-arithmetic/

xgboost, Release 1.2.1

1.3.2 Introduction to Model IO

In XGBoost 1.0.0, we introduced experimental support of using JSON for saving/loading XGBoost models and re-
lated hyper-parameters for training, aiming to replace the old binary internal format with an open format that can be
easily reused. The support for binary format will be continued in the future until JSON format is no-longer exper-
imental and has satisfying performance. This tutorial aims to share some basic insights into the JSON serialisation
method used in XGBoost. Without explicitly mentioned, the following sections assume you are using the experimen-
tal JSON format, which can be enabled by passing enable_experimental_json_serialization=True
as training parameter, or provide the file name with .json as file extension when saving/loading model: booster.
save_model('model.json'). More details below.

Before we get started, XGBoost is a gradient boosting library with focus on tree model, which means inside XGBoost,
there are 2 distinct parts:

1. The model consisting of trees and

2. Hyperparameters and configurations used for building the model.

If you come from Deep Learning community, then it should be clear to you that there are differences between the
neural network structures composed of weights with fixed tensor operations, and the optimizers (like RMSprop) used
to train them.

So when one calls booster.save_model (xgb.save in R), XGBoost saves the trees, some model parameters
like number of input columns in trained trees, and the objective function, which combined to represent the concept of
“model” in XGBoost. As for why are we saving the objective as part of model, that’s because objective controls trans-
formation of global bias (called base_score in XGBoost). Users can share this model with others for prediction,
evaluation or continue the training with a different set of hyper-parameters etc.

However, this is not the end of story. There are cases where we need to save something more than just the model itself.
For example, in distrbuted training, XGBoost performs checkpointing operation. Or for some reasons, your favorite
distributed computing framework decide to copy the model from one worker to another and continue the training in
there. In such cases, the serialisation output is required to contain enougth information to continue previous training
without user providing any parameters again. We consider such scenario as memory snapshot (or memory based
serialisation method) and distinguish it with normal model IO operation. Currently, memory snapshot is used in the
following places:

• Python package: when the Booster object is pickled with the built-in pickle module.

• R package: when the xgb.Booster object is persisted with the built-in functions saveRDS or save.

Other language bindings are still working in progress.

Note: The old binary format doesn’t distinguish difference between model and raw memory serialisation format, it’s
a mix of everything, which is part of the reason why we want to replace it with a more robust serialisation method.
JVM Package has its own memory based serialisation methods.

To enable JSON format support for model IO (saving only the trees and objective), provide a filename with .json as
file extension:

Listing 1: Python

bst.save_model('model_file_name.json')

1.3. XGBoost Tutorials 21

https://www.json.org/json-en.html

xgboost, Release 1.2.1

Listing 2: R

xgb.save(bst, 'model_file_name.json')

To use JSON to store memory snapshots, add enable_experimental_json_serialization as a training
parameter. In Python this can be done by:

bst = xgboost.train({'enable_experimental_json_serialization': True}, dtrain)
with open('filename', 'wb') as fd:

pickle.dump(bst, fd)

Notice the filename is for Python intrinsic function open, not for XGBoost. Hence parameter
enable_experimental_json_serialization is required to enable JSON format.

Similarly, in the R package, add enable_experimental_json_serialization to the training parameter:

params <- list(enable_experimental_json_serialization = TRUE, ...)
bst <- xgboost.train(params, dtrain, nrounds = 10)
saveRDS(bst, 'filename.rds')

A note on backward compatibility of models and memory snapshots

We guarantee backward compatibility for models but not for memory snapshots.

Models (trees and objective) use a stable representation, so that models produced in earlier versions of XGBoost are
accessible in later versions of XGBoost. If you’d like to store or archive your model for long-term storage, use
save_model (Python) and xgb.save (R).

On the other hand, memory snapshot (serialisation) captures many stuff internal to XGBoost, and its format is not
stable and is subject to frequent changes. Therefore, memory snapshot is suitable for checkpointing only, where you
persist the complete snapshot of the training configurations so that you can recover robustly from possible failures
and resume the training process. Loading memory snapshot generated by an earlier version of XGBoost may result
in errors or undefined behaviors. If a model is persisted with pickle.dump (Python) or saveRDS (R), then the
model may not be accessible in later versions of XGBoost.

Custom objective and metric

XGBoost accepts user provided objective and metric functions as an extension. These functions are not saved in model
file as they are language dependent feature. With Python, user can pickle the model to include these functions in saved
binary. One drawback is, the output from pickle is not a stable serialization format and doesn’t work on different
Python version or XGBoost version, not to mention different language environment. Another way to workaround this
limitation is to provide these functions again after the model is loaded. If the customized function is useful, please
consider making a PR for implementing it inside XGBoost, this way we can have your functions working with different
language bindings.

22 Chapter 1. Contents

xgboost, Release 1.2.1

Loading pickled file from different version of XGBoost

As noted, pickled model is neither portable nor stable, but in some cases the pickled models are valuable. One way
to restore it in the future is to load it back with that specific version of Python and XGBoost, export the model
by calling save_model. To help easing the mitigation, we created a simple script for converting pickled XGBoost
0.90 Scikit-Learn interface object to XGBoost 1.0.0 native model. Please note that the script suits simple use cases,
and it’s advised not to use pickle when stability is needed. It’s located in xgboost/doc/python with the name
convert_090to100.py. See comments in the script for more details.

A similar procedure may be used to recover the model persisted in an old RDS file. In R, you are able to install an
older version of XGBoost using the remotes package:

library(remotes)
remotes::install_version("xgboost", "0.90.0.1") # Install version 0.90.0.1

Once the desired version is installed, you can load the RDS file with readRDS and recover the xgb.Booster
object. Then call xgb.save to export the model using the stable representation. Now you should be able to use the
model in the latest version of XGBoost.

Saving and Loading the internal parameters configuration

XGBoost’s C API, Python API and R API support saving and loading the internal configuration directly as a
JSON string. In Python package:

bst = xgboost.train(...)
config = bst.save_config()
print(config)

or in R:

config <- xgb.config(bst)
print(config)

Will print out something similiar to (not actual output as it’s too long for demonstration):

{
"Learner": {
"generic_parameter": {

"enable_experimental_json_serialization": "0",
"gpu_id": "0",
"gpu_page_size": "0",
"n_jobs": "0",
"random_state": "0",
"seed": "0",
"seed_per_iteration": "0"

},
"gradient_booster": {

"gbtree_train_param": {
"num_parallel_tree": "1",
"predictor": "gpu_predictor",
"process_type": "default",
"tree_method": "gpu_hist",
"updater": "grow_gpu_hist",
"updater_seq": "grow_gpu_hist"

},
"name": "gbtree",

(continues on next page)

1.3. XGBoost Tutorials 23

xgboost, Release 1.2.1

(continued from previous page)

"updater": {
"grow_gpu_hist": {
"gpu_hist_train_param": {
"debug_synchronize": "0",
"gpu_batch_nrows": "0",
"single_precision_histogram": "0"

},
"train_param": {

"alpha": "0",
"cache_opt": "1",
"colsample_bylevel": "1",
"colsample_bynode": "1",
"colsample_bytree": "1",
"default_direction": "learn",

...

"subsample": "1"
}

}
}

},
"learner_train_param": {

"booster": "gbtree",
"disable_default_eval_metric": "0",
"dsplit": "auto",
"objective": "reg:squarederror"

},
"metrics": [],
"objective": {

"name": "reg:squarederror",
"reg_loss_param": {

"scale_pos_weight": "1"
}

}
},
"version": [1, 0, 0]

}

You can load it back to the model generated by same version of XGBoost by:

bst.load_config(config)

This way users can study the internal representation more closely. Please note that some JSON generators make use
of locale dependent floating point serialization methods, which is not supported by XGBoost.

24 Chapter 1. Contents

xgboost, Release 1.2.1

Difference between saving model and dumping model

XGBoost has a function called dump_model in Booster object, which lets you to export the model in a readable
format like text, json or dot (graphviz). The primary use case for it is for model interpretation or visualization,
and is not supposed to be loaded back to XGBoost. The JSON version has a schema. See next section for more info.

JSON Schema

Another important feature of JSON format is a documented Schema, based on which one can easily reuse the output
model from XGBoost. Here is the initial draft of JSON schema for the output model (not serialization, which will
not be stable as noted above). It’s subject to change due to the beta status. For an example of parsing XGBoost tree
model, see /demo/json-model. Please notice the “weight_drop” field used in “dart” booster. XGBoost does not
scale tree leaf directly, instead it saves the weights as a separated array.

{
"$schema": "http://json-schema.org/draft-07/schema#",
"definitions": {
"gbtree": {

"type": "object",
"properties": {

"name": {
"const": "gbtree"

},
"model": {
"type": "object",
"properties": {

"gbtree_model_param": {
"$ref": "#/definitions/gbtree_model_param"

},
"trees": {
"type": "array",
"items": {
"type": "object",
"properties": {
"tree_param": {
"type": "object",
"properties": {
"num_nodes": {
"type": "string"

},
"size_leaf_vector": {
"type": "string"

},
"num_feature": {
"type": "string"

}
},
"required": [
"num_nodes",
"num_feature",
"size_leaf_vector"

]
},
"id": {
"type": "integer"

},

(continues on next page)

1.3. XGBoost Tutorials 25

https://github.com/dmlc/xgboost/blob/master/doc/dump.schema
https://json-schema.org/

xgboost, Release 1.2.1

(continued from previous page)

"loss_changes": {
"type": "array",
"items": {
"type": "number"

}
},
"sum_hessian": {
"type": "array",
"items": {
"type": "number"

}
},
"base_weights": {
"type": "array",
"items": {
"type": "number"

}
},
"leaf_child_counts": {
"type": "array",
"items": {
"type": "integer"

}
},
"left_children": {
"type": "array",
"items": {
"type": "integer"

}
},
"right_children": {
"type": "array",
"items": {
"type": "integer"

}
},
"parents": {
"type": "array",
"items": {
"type": "integer"

}
},
"split_indices": {
"type": "array",
"items": {
"type": "integer"

}
},
"split_conditions": {
"type": "array",
"items": {
"type": "number"

}
},
"default_left": {
"type": "array",
"items": {

(continues on next page)

26 Chapter 1. Contents

xgboost, Release 1.2.1

(continued from previous page)

"type": "boolean"
}

}
},
"required": [
"tree_param",
"loss_changes",
"sum_hessian",
"base_weights",
"leaf_child_counts",
"left_children",
"right_children",
"parents",
"split_indices",
"split_conditions",
"default_left"

]
}

},
"tree_info": {
"type": "array",
"items": {
"type": "integer"

}
}

},
"required": [

"gbtree_model_param",
"trees",
"tree_info"

]
}

},
"required": [
"name",
"model"

]
},
"gbtree_model_param": {

"type": "object",
"properties": {
"num_trees": {

"type": "string"
},
"size_leaf_vector": {

"type": "string"
}

},
"required": [
"num_trees",
"size_leaf_vector"

]
},
"tree_param": {

"type": "object",
"properties": {
"num_nodes": {

(continues on next page)

1.3. XGBoost Tutorials 27

xgboost, Release 1.2.1

(continued from previous page)

"type": "string"
},
"size_leaf_vector": {
"type": "string"

},
"num_feature": {
"type": "string"

}
},
"required": [

"num_nodes",
"num_feature",
"size_leaf_vector"

]
},
"reg_loss_param": {

"type": "object",
"properties": {

"scale_pos_weight": {
"type": "string"

}
}

},
"softmax_multiclass_param": {

"type": "object",
"properties": {

"num_class": { "type": "string" }
}

},
"lambda_rank_param": {

"type": "object",
"properties": {

"num_pairsample": { "type": "string" },
"fix_list_weight": { "type": "string" }

}
}

},
"type": "object",
"properties": {
"version": {

"type": "array",
"items": [

{
"type": "number",
"const": 1

},
{
"type": "number",
"minimum": 0

},
{
"type": "number",
"minimum": 0

}
],
"minItems": 3,
"maxItems": 3

(continues on next page)

28 Chapter 1. Contents

xgboost, Release 1.2.1

(continued from previous page)

},
"learner": {

"type": "object",
"properties": {

"gradient_booster": {
"oneOf": [
{
"$ref": "#/definitions/gbtree"

},
{
"type": "object",
"properties": {
"name": { "const": "gblinear" },
"model": {
"type": "object",
"properties": {
"weights": {
"type": "array",
"items": {
"type": "number"

}
}

}
}

}
},
{
"type": "object",
"properties": {
"name": { "const": "dart" },
"gbtree": {
"$ref": "#/definitions/gbtree"

},
"weight_drop": {
"type": "array",
"items": {
"type": "number"

}
}

},
"required": [
"name",
"gbtree",
"weight_drop"

]
}

]
},

"objective": {
"oneOf": [

{
"type": "object",
"properties": {
"name": { "const": "reg:squarederror" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
(continues on next page)

1.3. XGBoost Tutorials 29

xgboost, Release 1.2.1

(continued from previous page)

"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:squaredlogerror" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:logistic" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "binary:logistic" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "binary:logitraw" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},

{
"type": "object",
"properties": {
"name": { "const": "count:poisson" },
"poisson_regression_param": {
"type": "object",
"properties": {

(continues on next page)

30 Chapter 1. Contents

xgboost, Release 1.2.1

(continued from previous page)

"max_delta_step": { "type": "string" }
}

}
},
"required": [
"name",
"poisson_regression_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:tweedie" },
"tweedie_regression_param": {
"type": "object",
"properties": {
"tweedie_variance_power": { "type": "string" }

}
}

},
"required": [
"name",
"tweedie_regression_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "survival:cox" }

},
"required": ["name"]

},
{
"type": "object",
"properties": {
"name": { "const": "reg:gamma" }

},
"required": ["name"]

},

{
"type": "object",
"properties": {
"name": { "const": "multi:softprob" },
"softmax_multiclass_param": { "$ref": "#/definitions/softmax_

→˓multiclass_param"}
},
"required": [
"name",
"softmax_multiclass_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "multi:softmax" },
"softmax_multiclass_param": { "$ref": "#/definitions/softmax_

→˓multiclass_param"} (continues on next page)

1.3. XGBoost Tutorials 31

xgboost, Release 1.2.1

(continued from previous page)

},
"required": [
"name",
"softmax_multiclass_param"

]
},

{
"type": "object",
"properties": {
"name": { "const": "rank:pairwise" },
"lambda_rank_param": { "$ref": "#/definitions/lambda_rank_param"}

},
"required": [
"name",
"lambda_rank_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "rank:ndcg" },
"lambda_rank_param": { "$ref": "#/definitions/lambda_rank_param"}

},
"required": [
"name",
"lambda_rank_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "rank:map" },
"lambda_rank_param": { "$ref": "#/definitions/lambda_rank_param"}

},
"required": [
"name",
"lambda_rank_param"

]
}

]
},

"learner_model_param": {
"type": "object",
"properties": {

"base_score": { "type": "string" },
"num_class": { "type": "string" },
"num_feature": { "type": "string" }

}
}

},
"required": [
"gradient_booster",
"objective"

]
}

(continues on next page)

32 Chapter 1. Contents

xgboost, Release 1.2.1

(continued from previous page)

},
"required": [
"version",
"learner"

]
}

Future Plans

Right now using the JSON format incurs longer serialisation time, we have been working on optimizing the JSON
implementation to close the gap between binary format and JSON format.

1.3.3 Distributed XGBoost YARN on AWS

[This page is under construction.]

Note: XGBoost with Spark

If you are preprocessing training data with Spark, consider using XGBoost4J-Spark.

1.3.4 Distributed XGBoost on Kubernetes

Distributed XGBoost training and batch prediction on Kubernetes are supported via Kubeflow XGBoost Operator.

Instructions

In order to run a XGBoost job in a Kubernetes cluster, perform the following steps:

1. Install XGBoost Operator on the Kubernetes cluster.

a. XGBoost Operator is designed to manage the scheduling and monitoring of XGBoost jobs. Follow this
installation guide to install XGBoost Operator.

2. Write application code that will be executed by the XGBoost Operator.

a. To use XGBoost Operator, you’ll have to write a couple of Python scripts that implement the distributed
training logic for XGBoost. Please refer to the Iris classification example.

b. Data reader/writer: you need to implement the data reader and writer based on the specific requirements
of your chosen data source. For example, if your dataset is stored in a Hive table, you have to write the
code to read from or write to the Hive table based on the index of the worker.

c. Model persistence: in the Iris classification example, the model is stored in Alibaba OSS. If you want to
store your model in other storages such as Amazon S3 or Google NFS, you’ll need to implement the model
persistence logic based on the requirements of the chosen storage system.

3. Configure the XGBoost job using a YAML file.

a. YAML file is used to configure the computational resources and environment for your XGBoost job to run,
e.g. the number of workers/masters and the number of CPU/GPUs. Please refer to this YAML template
for an example.

4. Submit XGBoost job to a Kubernetes cluster.

1.3. XGBoost Tutorials 33

https://kubernetes.io/
https://github.com/kubeflow/xgboost-operator
https://github.com/kubeflow/xgboost-operator#installing-xgboost-operator
https://github.com/kubeflow/xgboost-operator#installing-xgboost-operator
https://github.com/kubeflow/xgboost-operator/tree/master/config/samples/xgboost-dist
https://github.com/kubeflow/xgboost-operator/tree/master/config/samples/xgboost-dist
https://www.alibabacloud.com/product/oss
https://github.com/kubeflow/xgboost-operator/blob/master/config/samples/xgboost-dist/xgboostjob_v1alpha1_iris_train.yaml

xgboost, Release 1.2.1

a. Use kubectl to submit a distributed XGBoost job as illustrated here.

Support

Please submit an issue on XGBoost Operator repo for any feature requests or problems.

1.3.5 Distributed XGBoost with Dask

Dask is a parallel computing library built on Python. Dask allows easy management of distributed workers and excels
at handling large distributed data science workflows. The implementation in XGBoost originates from dask-xgboost
with some extended functionalities and a different interface. Right now it is still under construction and may change
(with proper warnings) in the future. The tutorial here focuses on basic usage of dask with CPU tree algorithms. For
an overview of GPU based training and internal workings, see A New, Official Dask API for XGBoost.

Contents

• Requirements

• Overview

• Threads

• Working with asyncio

• Why is the initialization of DaskDMatrix so slow and throws weird errors

• Limitations

Requirements

Dask can be installed using either pip or conda (see the dask installation documentation for more information). For
accelerating XGBoost with GPUs, dask-cuda is recommended for creating GPU clusters.

Overview

A dask cluster consists of three different components: a centralized scheduler, one or more workers, and one or more
clients which act as the user-facing entry point for submitting tasks to the cluster. When using XGBoost with dask,
one needs to call the XGBoost dask interface from the client side. Below is a small example which illustrates basic
usage of running XGBoost on a dask cluster:

import xgboost as xgb
import dask.distributed

cluster = dask.distributed.LocalCluster(n_workers=4, threads_per_worker=1)
client = dask.distributed.Client(cluster)

dtrain = xgb.dask.DaskDMatrix(client, X, y) # X and y are dask dataframes or arrays

output = xgb.dask.train(client,
{'verbosity': 2,
'tree_method': 'hist'},

dtrain,
num_boost_round=4, evals=[(dtrain, 'train')])

34 Chapter 1. Contents

https://kubernetes.io/docs/reference/kubectl/overview/
https://github.com/kubeflow/xgboost-operator#creating-a-xgboost-trainingprediction-job
https://github.com/kubeflow/xgboost-operator
https://dask.org
https://github.com/dask/dask-xgboost
https://medium.com/rapids-ai/a-new-official-dask-api-for-xgboost-e8b10f3d1eb7
https://docs.dask.org/en/latest/install.html
https://github.com/rapidsai/dask-cuda

xgboost, Release 1.2.1

Here we first create a cluster in single-node mode with dask.distributed.LocalCluster, then connect a
dask.distributed.Client to this cluster, setting up an environment for later computation.

We then create a DMatrix object and pass it to train, along with some other parameters, much like XGBoost’s
normal, non-dask interface. The primary difference with XGBoost’s dask interface is we pass our dask client as an
additional argument for carrying out the computation. Note that if client is set to None, XGBoost will use the default
client returned by dask.

There are two sets of APIs implemented in XGBoost. The first set is functional API illustrated in above example.
Given the data and a set of parameters, the train function returns a model and the computation history as a Python
dictionary:

{'booster': Booster,
'history': dict}

For prediction, pass the output returned by train into xgb.dask.predict:

prediction = xgb.dask.predict(client, output, dtrain)

Or equivalently, pass output['booster']:

prediction = xgb.dask.predict(client, output['booster'], dtrain)

Here prediction is a dask Array object containing predictions from model.

Alternatively, XGBoost also implements the Scikit-Learn interface with DaskXGBClassifier and
DaskXGBRegressor. See xgboost/demo/dask for more examples.

Threads

XGBoost has built in support for parallel computation through threads by the setting nthread parameter (n_jobs
for scikit-learn). If these parameters are set, they will override the configuration in Dask. For example:

with dask.distributed.LocalCluster(n_workers=7, threads_per_worker=4) as cluster:

There are 4 threads allocated for each dask worker. Then by default XGBoost will use 4 threads in each process for
both training and prediction. But if nthread parameter is set:

output = xgb.dask.train(client,
{'verbosity': 1,
'nthread': 8,
'tree_method': 'hist'},

dtrain,
num_boost_round=4, evals=[(dtrain, 'train')])

XGBoost will use 8 threads in each training process.

1.3. XGBoost Tutorials 35

xgboost, Release 1.2.1

Working with asyncio

New in version 1.2.0.

XGBoost’s dask interface supports the new asyncio in Python and can be integrated into asynchronous workflows.
For using dask with asynchronous operations, please refer to this dask example and document in distributed. To use
XGBoost’s dask interface asynchronously, the client which is passed as an argument for training and prediction
must be operating in asynchronous mode by specifying asynchronous=True when the client is created (exam-
ple below). All functions (including DaskDMatrix) provided by the functional interface will then return coroutines
which can then be awaited to retrieve their result.

Functional interface:

async with dask.distributed.Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
m = await xgb.dask.DaskDMatrix(client, X, y)
output = await xgb.dask.train(client, {}, dtrain=m)

with_m = await xgb.dask.predict(client, output, m)
with_X = await xgb.dask.predict(client, output, X)
inplace = await xgb.dask.inplace_predict(client, output, X)

Use `client.compute` instead of the `compute` method from dask collection
print(await client.compute(with_m))

While for the Scikit-Learn interface, trivial methods like set_params and accessing class attributes like
evals_result_ do not require await. Other methods involving actual computation will return a coroutine and
hence require awaiting:

async with dask.distributed.Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
regressor = await xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
regressor.set_params(tree_method='hist') # trivial method, synchronous operation
regressor.client = client # accessing attribute, synchronous operation
regressor = await regressor.fit(X, y, eval_set=[(X, y)])
prediction = await regressor.predict(X)

Use `client.compute` instead of the `compute` method from dask collection
print(await client.compute(prediction))

Be careful that XGBoost uses all the workers supplied by the client object. If you are training on GPU cluster and
have 2 GPUs, the client object passed to XGBoost should return 2 workers.

Why is the initialization of DaskDMatrix so slow and throws weird errors

The dask API in XGBoost requires construction of DaskDMatrix. With the Scikit-Learn interface, DaskDMatrix
is implicitly constructed for all input data during the fit or predict steps. You might have observed that
DaskDMatrix construction can take large amounts of time, and sometimes throws errors that don’t seem to be
relevant to DaskDMatrix. Here is a brief explanation for why. By default most dask computations are lazily eval-
uated, which means that computation is not carried out until you explicitly ask for a result by, for example, calling
compute(). See the previous link for details in dask, and this wiki for information on the general concept of
lazy evaluation. The DaskDMatrix constructor forces lazy computations to be evaluated, which means it’s where
all your earlier computation actually being carried out, including operations like dd.read_csv(). To isolate the
computation in DaskDMatrix from other lazy computations, one can explicitly wait for results of input data be-
fore constructing a DaskDMatrix. Also dask’s diagnostics dashboard can be used to monitor what operations are
currently being performed.

36 Chapter 1. Contents

https://examples.dask.org/applications/async-await.html
https://distributed.dask.org/en/latest/asynchronous.html
https://docs.dask.org/en/latest/user-interfaces.html#laziness-and-computing
https://docs.dask.org/en/latest/user-interfaces.html#laziness-and-computing
https://en.wikipedia.org/wiki/Lazy_evaluation
https://distributed.dask.org/en/latest/web.html

xgboost, Release 1.2.1

Limitations

Basic functionality including model training and generating classification and regression predictions have been imple-
mented. However, there are still some other limitations we haven’t addressed yet:

• Label encoding for the DaskXGBClassifier classifier may not be supported. So users need to encode their
training labels into discrete values first.

• Ranking is not yet supported.

• Empty worker is not well supported by classifier. If the training hangs for classifier with a warning about empty
DMatrix, please consider balancing your data first. But regressor works fine with empty DMatrix.

• Callback functions are not tested.

• Only GridSearchCV from Scikit-Learn is supported. Meaning that we can distribute data among workers but
have to train one model at a time. If you want to scale up grid searching with model parallelism with Dask-ML,
please consider using XGBoost’s non-dask Scikit-Learn interface, for example xgboost.XGBRegressor,
for now.

1.3.6 DART booster

XGBoost mostly combines a huge number of regression trees with a small learning rate. In this situation, trees added
early are significant and trees added late are unimportant.

Vinayak and Gilad-Bachrach proposed a new method to add dropout techniques from the deep neural net community
to boosted trees, and reported better results in some situations.

This is a instruction of new tree booster dart.

Original paper

Rashmi Korlakai Vinayak, Ran Gilad-Bachrach. “DART: Dropouts meet Multiple Additive Regression Trees.” JMLR.

Features

• Drop trees in order to solve the over-fitting.

– Trivial trees (to correct trivial errors) may be prevented.

Because of the randomness introduced in the training, expect the following few differences:

• Training can be slower than gbtree because the random dropout prevents usage of the prediction buffer.

• The early stop might not be stable, due to the randomness.

How it works

• In 𝑚-th training round, suppose 𝑘 trees are selected to be dropped.

• Let 𝐷 =
∑︀

𝑖∈K 𝐹𝑖 be the leaf scores of dropped trees and 𝐹𝑚 = 𝜂𝐹𝑚 be the leaf scores of a new tree.

• The objective function is as follows:

Obj =

𝑛∑︁
𝑗=1

𝐿
(︁
𝑦𝑗 , 𝑦

𝑚−1
𝑗 −𝐷𝑗 + 𝐹𝑚

)︁
+ Ω

(︁
𝐹𝑚

)︁
.

• 𝐷 and 𝐹𝑚 are overshooting, so using scale factor

1.3. XGBoost Tutorials 37

https://ml.dask.org/
http://www.jmlr.org/proceedings/papers/v38/korlakaivinayak15.pdf

xgboost, Release 1.2.1

𝑦𝑚𝑗 =
∑︁
𝑖 ̸∈K

𝐹𝑖 + 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝑏𝐹𝑚

)︃
.

Parameters

The booster dart inherits gbtree booster, so it supports all parameters that gbtree does, such as eta, gamma,
max_depth etc.

Additional parameters are noted below:

• sample_type: type of sampling algorithm.

– uniform: (default) dropped trees are selected uniformly.

– weighted: dropped trees are selected in proportion to weight.

• normalize_type: type of normalization algorithm.

– tree: (default) New trees have the same weight of each of dropped trees.

𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 +
1

𝑘
𝐹𝑚

)︃
= 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 +
𝜂

𝑘
𝐹𝑚

)︃
∼ 𝑎

(︁
1 +

𝜂

𝑘

)︁
𝐷

= 𝑎
𝑘 + 𝜂

𝑘
𝐷 = 𝐷,

𝑎 =
𝑘

𝑘 + 𝜂

– forest: New trees have the same weight of sum of dropped trees (forest).

𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝐹𝑚

)︃
= 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝜂𝐹𝑚

)︃
∼ 𝑎 (1 + 𝜂)𝐷

= 𝑎(1 + 𝜂)𝐷 = 𝐷,

𝑎 =
1

1 + 𝜂
.

• rate_drop: dropout rate.

– range: [0.0, 1.0]

• skip_drop: probability of skipping dropout.

– If a dropout is skipped, new trees are added in the same manner as gbtree.

– range: [0.0, 1.0]

38 Chapter 1. Contents

xgboost, Release 1.2.1

Sample Script

import xgboost as xgb
read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
specify parameters via map
param = {'booster': 'dart',

'max_depth': 5, 'learning_rate': 0.1,
'objective': 'binary:logistic',
'sample_type': 'uniform',
'normalize_type': 'tree',
'rate_drop': 0.1,
'skip_drop': 0.5}

num_round = 50
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)

1.3.7 Monotonic Constraints

It is often the case in a modeling problem or project that the functional form of an acceptable model is constrained
in some way. This may happen due to business considerations, or because of the type of scientific question being
investigated. In some cases, where there is a very strong prior belief that the true relationship has some quality,
constraints can be used to improve the predictive performance of the model.

A common type of constraint in this situation is that certain features bear a monotonic relationship to the predicted
response:

𝑓(𝑥1, 𝑥2, . . . , 𝑥, . . . , 𝑥𝑛−1, 𝑥𝑛) ≤ 𝑓(𝑥1, 𝑥2, . . . , 𝑥
′, . . . , 𝑥𝑛−1, 𝑥𝑛)

whenever 𝑥 ≤ 𝑥′ is an increasing constraint; or

𝑓(𝑥1, 𝑥2, . . . , 𝑥, . . . , 𝑥𝑛−1, 𝑥𝑛) ≥ 𝑓(𝑥1, 𝑥2, . . . , 𝑥
′, . . . , 𝑥𝑛−1, 𝑥𝑛)

whenever 𝑥 ≤ 𝑥′ is a decreasing constraint.

XGBoost has the ability to enforce monotonicity constraints on any features used in a boosted model.

A Simple Example

To illustrate, let’s create some simulated data with two features and a response according to the following scheme

𝑦 = 5𝑥1 + sin(10𝜋𝑥1) − 5𝑥2 − cos(10𝜋𝑥2) + 𝑁(0, 0.01)𝑥1, 𝑥2 ∈ [0, 1]

The response generally increases with respect to the 𝑥1 feature, but a sinusoidal variation has been superimposed,
resulting in the true effect being non-monotonic. For the 𝑥2 feature the variation is decreasing with a sinusoidal
variation.

1.3. XGBoost Tutorials 39

xgboost, Release 1.2.1

Let’s fit a boosted tree model to this data without imposing any monotonic constraints:

The black curve shows the trend inferred from the model for each feature. To make these plots the distinguished
feature 𝑥𝑖 is fed to the model over a one-dimensional grid of values, while all the other features (in this case only one
other feature) are set to their average values. We see that the model does a good job of capturing the general trend with
the oscillatory wave superimposed.

Here is the same model, but fit with monotonicity constraints:

40 Chapter 1. Contents

xgboost, Release 1.2.1

We see the effect of the constraint. For each variable the general direction of the trend is still evident, but the oscillatory
behaviour no longer remains as it would violate our imposed constraints.

Enforcing Monotonic Constraints in XGBoost

It is very simple to enforce monotonicity constraints in XGBoost. Here we will give an example using Python, but the
same general idea generalizes to other platforms.

Suppose the following code fits your model without monotonicity constraints

model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

Then fitting with monotonicity constraints only requires adding a single parameter

params_constrained = params.copy()
params_constrained['monotone_constraints'] = "(1,-1)"

model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

In this example the training data X has two columns, and by using the parameter values (1,-1) we are telling
XGBoost to impose an increasing constraint on the first predictor and a decreasing constraint on the second.

Some other examples:

• (1,0): An increasing constraint on the first predictor and no constraint on the second.

• (0,-1): No constraint on the first predictor and a decreasing constraint on the second.

Choice of tree construction algorithm. To use monotonic constraints, be sure to set the tree_method parameter
to one of exact, hist, and gpu_hist.

Note for the ‘hist’ tree construction algorithm. If tree_method is set to either hist or gpu_hist, enabling
monotonic constraints may produce unnecessarily shallow trees. This is because the histmethod reduces the number
of candidate splits to be considered at each split. Monotonic constraints may wipe out all available split candidates, in
which case no split is made. To reduce the effect, you may want to increase the max_bin parameter to consider more
split candidates.

1.3. XGBoost Tutorials 41

xgboost, Release 1.2.1

1.3.8 Random Forests in XGBoost

XGBoost is normally used to train gradient-boosted decision trees and other gradient boosted models. Random forests
use the same model representation and inference, as gradient-boosted decision trees, but a different training algorithm.
One can use XGBoost to train a standalone random forest or use random forest as a base model for gradient boosting.
Here we focus on training standalone random forest.

We have native APIs for training random forests since the early days, and a new Scikit-Learn wrapper after 0.82 (not
included in 0.82). Please note that the new Scikit-Learn wrapper is still experimental, which means we might change
the interface whenever needed.

Standalone Random Forest With XGBoost API

The following parameters must be set to enable random forest training.

• booster should be set to gbtree, as we are training forests. Note that as this is the default, this parameter
needn’t be set explicitly.

• subsample must be set to a value less than 1 to enable random selection of training cases (rows).

• One of colsample_by* parameters must be set to a value less than 1 to enable random selection of columns.
Normally, colsample_bynode would be set to a value less than 1 to randomly sample columns at each tree
split.

• num_parallel_tree should be set to the size of the forest being trained.

• num_boost_round should be set to 1 to prevent XGBoost from boosting multiple random forests. Note that
this is a keyword argument to train(), and is not part of the parameter dictionary.

• eta (alias: learning_rate) must be set to 1 when training random forest regression.

• random_state can be used to seed the random number generator.

Other parameters should be set in a similar way they are set for gradient boosting. For instance, objective will
typically be reg:squarederror for regression and binary:logistic for classification, lambda should be
set according to a desired regularization weight, etc.

If both num_parallel_tree and num_boost_round are greater than 1, training will use a combination of
random forest and gradient boosting strategy. It will perform num_boost_round rounds, boosting a random forest
of num_parallel_tree trees at each round. If early stopping is not enabled, the final model will consist of
num_parallel_tree * num_boost_round trees.

Here is a sample parameter dictionary for training a random forest on a GPU using xgboost:

params = {
'colsample_bynode': 0.8,
'learning_rate': 1,
'max_depth': 5,
'num_parallel_tree': 100,
'objective': 'binary:logistic',
'subsample': 0.8,
'tree_method': 'gpu_hist'

}

A random forest model can then be trained as follows:

bst = train(params, dmatrix, num_boost_round=1)

42 Chapter 1. Contents

xgboost, Release 1.2.1

Standalone Random Forest With Scikit-Learn-Like API

XGBRFClassifier and XGBRFRegressor are SKL-like classes that provide random forest functionality. They
are basically versions of XGBClassifier and XGBRegressor that train random forest instead of gradient boost-
ing, and have default values and meaning of some of the parameters adjusted accordingly. In particular:

• n_estimators specifies the size of the forest to be trained; it is converted to num_parallel_tree,
instead of the number of boosting rounds

• learning_rate is set to 1 by default

• colsample_bynode and subsample are set to 0.8 by default

• booster is always gbtree

For a simple example, you can train a random forest regressor with:

from sklearn.model_selection import KFold

Your code ...

kf = KFold(n_splits=2)
for train_index, test_index in kf.split(X, y):

xgb_model = xgb.XGBRFRegressor(random_state=42).fit(
X[train_index], y[train_index])

Note that these classes have a smaller selection of parameters compared to using train(). In particular, it is impos-
sible to combine random forests with gradient boosting using this API.

Caveats

• XGBoost uses 2nd order approximation to the objective function. This can lead to results that differ from a
random forest implementation that uses the exact value of the objective function.

• XGBoost does not perform replacement when subsampling training cases. Each training case can occur in a
subsampled set either 0 or 1 time.

1.3.9 Feature Interaction Constraints

The decision tree is a powerful tool to discover interaction among independent variables (features). Variables that
appear together in a traversal path are interacting with one another, since the condition of a child node is predicated on
the condition of the parent node. For example, the highlighted red path in the diagram below contains three variables:
𝑥1, 𝑥7, and 𝑥10, so the highlighted prediction (at the highlighted leaf node) is the product of interaction between 𝑥1,
𝑥7, and 𝑥10.

When the tree depth is larger than one, many variables interact on the sole basis of minimizing training loss, and the
resulting decision tree may capture a spurious relationship (noise) rather than a legitimate relationship that generalizes
across different datasets. Feature interaction constraints allow users to decide which variables are allowed to interact
and which are not.

Potential benefits include:

• Better predictive performance from focusing on interactions that work – whether through domain specific knowl-
edge or algorithms that rank interactions

• Less noise in predictions; better generalization

• More control to the user on what the model can fit. For example, the user may want to exclude some interactions
even if they perform well due to regulatory constraints

1.3. XGBoost Tutorials 43

xgboost, Release 1.2.1

A Simple Example

Feature interaction constraints are expressed in terms of groups of variables that are allowed to interact. For example,
the constraint [0, 1] indicates that variables 𝑥0 and 𝑥1 are allowed to interact with each other but with no other
variable. Similarly, [2, 3, 4] indicates that 𝑥2, 𝑥3, and 𝑥4 are allowed to interact with one another but with no
other variable. A set of feature interaction constraints is expressed as a nested list, e.g. [[0, 1], [2, 3, 4]],
where each inner list is a group of indices of features that are allowed to interact with each other.

In the following diagram, the left decision tree is in violation of the first constraint ([0, 1]), whereas the right
decision tree complies with both the first and second constraints ([0, 1], [2, 3, 4]).

Enforcing Feature Interaction Constraints in XGBoost

It is very simple to enforce feature interaction constraints in XGBoost. Here we will give an example using Python,
but the same general idea generalizes to other platforms.

Suppose the following code fits your model without feature interaction constraints:

model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

Then fitting with feature interaction constraints only requires adding a single parameter:

params_constrained = params.copy()
Use nested list to define feature interaction constraints
params_constrained['interaction_constraints'] = '[[0, 2], [1, 3, 4], [5, 6]]'
Features 0 and 2 are allowed to interact with each other but with no other feature
Features 1, 3, 4 are allowed to interact with one another but with no other feature
Features 5 and 6 are allowed to interact with each other but with no other feature

model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

Choice of tree construction algorithm. To use feature interaction constraints, be sure to set the tree_method
parameter to one of the following: exact, hist, approx or gpu_hist. Support for gpu_hist and approx is
added only in 1.0.0.

Advanced topic

The intuition behind interaction constraint is simple. User have prior knowledge about relations between different
features, and encode it as constraints during model construction. But there are also some subtleties around specifying
constraints. Take constraint [[1, 2], [2, 3, 4]] as an example, the second feature appears in two different
interaction sets [1, 2] and [2, 3, 4], so the union set of features allowed to interact with 2 is {1, 3, 4}.
In following diagram, root splits at feature 2. because all its descendants should be able to interact with it, so at the
second layer all 4 features are legitimate split candidates for further splitting, disregarding specified constraint sets.

This has lead to some interesting implications of feature interaction constraints. Take [[0, 1], [0, 1, 2],
[1, 2]] as another example. Assuming we have only 3 available features in our training datasets for presentation
purpose, careful readers might have found out that the above constraint is same with [0, 1, 2]. Since no matter
which feature is chosen for split in root node, all its descendants have to include every feature as legitimate split
candidates to avoid violating interaction constraints.

For one last example, we use [[0, 1], [1, 3, 4]] and choose feature 0 as split for root node. At the second
layer of built tree, 1 is the only legitimate split candidate except for 0 itself, since they belong to the same constraint

44 Chapter 1. Contents

xgboost, Release 1.2.1

Fig. 1: {1, 2, 3, 4} represents the sets of legitimate split features.

set. Following the grow path of our example tree below, the node at second layer splits at feature 1. But due to the fact
that 1 also belongs to second constraint set [1, 3, 4], at third layer, we need to include all features as candidates
to comply with its ascendants.

1.3.10 Survival Analysis with Accelerated Failure Time

• What is survival analysis?

• Accelerated Failure Time model

• How to use

What is survival analysis?

Survival analysis (regression) models time to an event of interest. Survival analysis is a special kind of regression
and differs from the conventional regression task as follows:

• The label is always positive, since you cannot wait a negative amount of time until the event occurs.

• The label may not be fully known, or censored, because “it takes time to measure time.”

The second bullet point is crucial and we should dwell on it more. As you may have guessed from the name, one of the
earliest applications of survival analysis is to model mortality of a given population. Let’s take NCCTG Lung Cancer
Dataset as an example. The first 8 columns represent features and the last column, Time to death, represents the label.

1.3. XGBoost Tutorials 45

https://stat.ethz.ch/R-manual/R-devel/library/survival/html/lung.html
https://stat.ethz.ch/R-manual/R-devel/library/survival/html/lung.html

xgboost, Release 1.2.1

Fig. 2: {0, 1, 3, 4} represents the sets of legitimate split features.

46 Chapter 1. Contents

xgboost, Release 1.2.1

Inst Age Sex ph.ecog ph.karno pat.karno meal.cal wt.loss Time to death (days)
3 74 1 1 90 100 1175 N/A 306
3 68 1 0 90 90 1225 15 455
3 56 1 0 90 90 N/A 15 [1010,+∞)
5 57 1 1 90 60 1150 11 210
1 60 1 0 100 90 N/A 0 883
12 74 1 1 50 80 513 0 [1022,+∞)
7 68 2 2 70 60 384 10 310

Take a close look at the label for the third patient. His label is a range, not a single number. The third patient’s
label is said to be censored, because for some reason the experimenters could not get a complete measurement for
that label. One possible scenario: the patient survived the first 1010 days and walked out of the clinic on the 1011th
day, so his death was not directly observed. Another possibility: The experiment was cut short (since you cannot run
it forever) before his death could be observed. In any case, his label is [1010,+∞), meaning his time to death can be
any number that’s higher than 1010, e.g. 2000, 3000, or 10000.

There are four kinds of censoring:

• Uncensored: the label is not censored and given as a single number.

• Right-censored: the label is of form [𝑎,+∞), where 𝑎 is the lower bound.

• Left-censored: the label is of form [0, 𝑏], where 𝑏 is the upper bound.

• Interval-censored: the label is of form [𝑎, 𝑏], where 𝑎 and 𝑏 are the lower and upper bounds, respectively.

Right-censoring is the most commonly used.

Accelerated Failure Time model

Accelerated Failure Time (AFT) model is one of the most commonly used models in survival analysis. The model
is of the following form:

ln𝑌 = ⟨w,x⟩ + 𝜎𝑍

where

• x is a vector in R𝑑 representing the features.

• w is a vector consisting of 𝑑 coefficients, each corresponding to a feature.

• ⟨·, ·⟩ is the usual dot product in R𝑑.

• ln (·) is the natural logarithm.

• 𝑌 and 𝑍 are random variables.

– 𝑌 is the output label.

– 𝑍 is a random variable of a known probability distribution. Common choices are the normal distribution,
the logistic distribution, and the extreme distribution. Intuitively, 𝑍 represents the “noise” that pulls the
prediction ⟨w,x⟩ away from the true log label ln𝑌 .

• 𝜎 is a parameter that scales the size of 𝑍.

Note that this model is a generalized form of a linear regression model 𝑌 = ⟨w,x⟩. In order to make AFT work with
gradient boosting, we revise the model as follows:

ln𝑌 = 𝒯 (x) + 𝜎𝑍

1.3. XGBoost Tutorials 47

xgboost, Release 1.2.1

where 𝒯 (x) represents the output from a decision tree ensemble, given input x. Since 𝑍 is a random variable, we
have a likelihood defined for the expression ln𝑌 = 𝒯 (x) + 𝜎𝑍. So the goal for XGBoost is to maximize the (log)
likelihood by fitting a good tree ensemble 𝒯 (x).

How to use

The first step is to express the labels in the form of a range, so that every data point has two numbers associated
with it, namely the lower and upper bounds for the label. For uncensored labels, use a degenerate interval of form
[𝑎, 𝑎].

Censoring type Interval form Lower bound finite? Upper bound finite?
Uncensored [𝑎, 𝑎] XXX XXX
Right-censored [𝑎,+∞) XXX
Left-censored [0, 𝑏] XXX XXX
Interval-censored [𝑎, 𝑏] XXX XXX

Collect the lower bound numbers in one array (let’s call it y_lower_bound) and the upper bound number in another
array (call it y_upper_bound). The ranged labels are associated with a data matrix object via calls to xgboost.
DMatrix.set_float_info():

Listing 3: Python

import numpy as np
import xgboost as xgb

4-by-2 Data matrix
X = np.array([[1, -1], [-1, 1], [0, 1], [1, 0]])
dtrain = xgb.DMatrix(X)

Associate ranged labels with the data matrix.
This example shows each kind of censored labels.
uncensored right left interval
y_lower_bound = np.array([2.0, 3.0, 0.0, 4.0])
y_upper_bound = np.array([2.0, +np.inf, 4.0, 5.0])
dtrain.set_float_info('label_lower_bound', y_lower_bound)
dtrain.set_float_info('label_upper_bound', y_upper_bound)

Listing 4: R

library(xgboost)

4-by-2 Data matrix
X <- matrix(c(1., -1., -1., 1., 0., 1., 1., 0.),

nrow=4, ncol=2, byrow=TRUE)
dtrain <- xgb.DMatrix(X)

Associate ranged labels with the data matrix.
This example shows each kind of censored labels.
uncensored right left interval
y_lower_bound <- c(2., 3., 0., 4.)
y_upper_bound <- c(2., +Inf, 4., 5.)
setinfo(dtrain, 'label_lower_bound', y_lower_bound)
setinfo(dtrain, 'label_upper_bound', y_upper_bound)

Now we are ready to invoke the training API:

48 Chapter 1. Contents

xgboost, Release 1.2.1

Listing 5: Python

params = {'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'aft_loss_distribution': 'normal',
'aft_loss_distribution_scale': 1.20,
'tree_method': 'hist', 'learning_rate': 0.05, 'max_depth': 2}

bst = xgb.train(params, dtrain, num_boost_round=5,
evals=[(dtrain, 'train')])

Listing 6: R

params <- list(objective='survival:aft',
eval_metric='aft-nloglik',
aft_loss_distribution='normal',
aft_loss_distribution_scale=1.20,
tree_method='hist',
learning_rate=0.05,
max_depth=2)

watchlist <- list(train = dtrain)
bst <- xgb.train(params, dtrain, nrounds=5, watchlist)

We set objective parameter to survival:aft and eval_metric to aft-nloglik, so that the log likeli-
hood for the AFT model would be maximized. (XGBoost will actually minimize the negative log likelihood, hence
the name aft-nloglik.)

The parameter aft_loss_distribution corresponds to the distribution of the 𝑍 term in the AFT model, and
aft_loss_distribution_scale corresponds to the scaling factor 𝜎.

Currently, you can choose from three probability distributions for aft_loss_distribution:

aft_loss_distribution Probabilty Density Function (PDF)

normal
exp (−𝑧2/2)√

2𝜋

logistic
𝑒𝑧

(1 + 𝑒𝑧)2

extreme 𝑒𝑧𝑒− exp 𝑧

Note that it is not yet possible to set the ranged label using the scikit-learn interface (e.g. xgboost.
XGBRegressor). For now, you should use xgboost.train with xgboost.DMatrix.

1.3.11 Text Input Format of DMatrix

Basic Input Format

XGBoost currently supports two text formats for ingesting data: LibSVM and CSV. The rest of this document will
describe the LibSVM format. (See this Wikipedia article for a description of the CSV format.). Please be careful that,
XGBoost does not understand file extensions, nor try to guess the file format, as there is no universal agreement upon
file extension of LibSVM or CSV. Instead it employs URI format for specifying the precise input file type. For example
if you provide a csv file ./data.train.csv as input, XGBoost will blindly use the default libsvm parser to digest
it and generate a parser error. Instead, users need to provide an uri in the form of train.csv?format=csv. For
external memory input, the uri should of a form similar to train.csv?format=csv#dtrain.cache. See Data
Interface and Using XGBoost External Memory Version also.

For training or predicting, XGBoost takes an instance file with the format as below:

1.3. XGBoost Tutorials 49

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

xgboost, Release 1.2.1

Listing 7: train.txt

1 101:1.2 102:0.03
0 1:2.1 10001:300 10002:400
0 0:1.3 1:0.3
1 0:0.01 1:0.3
0 0:0.2 1:0.3

Each line represent a single instance, and in the first line ‘1’ is the instance label, ‘101’ and ‘102’ are feature indices,
‘1.2’ and ‘0.03’ are feature values. In the binary classification case, ‘1’ is used to indicate positive samples, and ‘0’ is
used to indicate negative samples. We also support probability values in [0,1] as label, to indicate the probability of
the instance being positive.

Auxiliary Files for Additional Information

Note: all information below is applicable only to single-node version of the package. If you’d like to perform
distributed training with multiple nodes, skip to the section Embedding additional information inside LibSVM file.

Group Input Format

For ranking task, XGBoost supports the group input format. In ranking task, instances are categorized into query
groups in real world scenarios. For example, in the learning to rank web pages scenario, the web page instances are
grouped by their queries. XGBoost requires an file that indicates the group information. For example, if the instance
file is the train.txt shown above, the group file should be named train.txt.group and be of the following
format:

Listing 8: train.txt.group

2
3

This means that, the data set contains 5 instances, and the first two instances are in a group and the other three are
in another group. The numbers in the group file are actually indicating the number of instances in each group in the
instance file in order. At the time of configuration, you do not have to indicate the path of the group file. If the instance
file name is xxx, XGBoost will check whether there is a file named xxx.group in the same directory.

Instance Weight File

Instances in the training data may be assigned weights to differentiate relative importance among them. For example,
if we provide an instance weight file for the train.txt file in the example as below:

Listing 9: train.txt.weight

1
0.5
0.5
1
0.5

It means that XGBoost will emphasize more on the first and fourth instance (i.e. the positive instances) while training.
The configuration is similar to configuring the group information. If the instance file name is xxx, XGBoost will look
for a file named xxx.weight in the same directory. If the file exists, the instance weights will be extracted and used
at the time of training.

50 Chapter 1. Contents

https://github.com/dmlc/xgboost/tree/master/demo/rank

xgboost, Release 1.2.1

Note: Binary buffer format and instance weights

If you choose to save the training data as a binary buffer (using save_binary()), keep in mind that the resulting
binary buffer file will include the instance weights. To update the weights, use the set_weight() function.

Initial Margin File

XGBoost supports providing each instance an initial margin prediction. For example, if we have a initial prediction
using logistic regression for train.txt file, we can create the following file:

Listing 10: train.txt.base_margin

-0.4
1.0
3.4

XGBoost will take these values as initial margin prediction and boost from that. An important note about base_margin
is that it should be margin prediction before transformation, so if you are doing logistic loss, you will need to put in
value before logistic transformation. If you are using XGBoost predictor, use pred_margin=1 to output margin
values.

Embedding additional information inside LibSVM file

This section is applicable to both single- and multiple-node settings.

Query ID Columns

This is most useful for ranking task, where the instances are grouped into query groups. You may embed query group
ID for each instance in the LibSVM file by adding a token of form qid:xx in each row:

Listing 11: train.txt

1 qid:1 101:1.2 102:0.03
0 qid:1 1:2.1 10001:300 10002:400
0 qid:2 0:1.3 1:0.3
1 qid:2 0:0.01 1:0.3
0 qid:3 0:0.2 1:0.3
1 qid:3 3:-0.1 10:-0.3
0 qid:3 6:0.2 10:0.15

Keep in mind the following restrictions:

• You are not allowed to specify query ID’s for some instances but not for others. Either every row is assigned
query ID’s or none at all.

• The rows have to be sorted in ascending order by the query IDs. So, for instance, you may not have one row
having large query ID than any of the following rows.

1.3. XGBoost Tutorials 51

https://github.com/dmlc/xgboost/tree/master/demo/rank

xgboost, Release 1.2.1

Instance weights

You may specify instance weights in the LibSVM file by appending each instance label with the corresponding weight
in the form of [label]:[weight], as shown by the following example:

Listing 12: train.txt

1:1.0 101:1.2 102:0.03
0:0.5 1:2.1 10001:300 10002:400
0:0.5 0:1.3 1:0.3
1:1.0 0:0.01 1:0.3
0:0.5 0:0.2 1:0.3

where the negative instances are assigned half weights compared to the positive instances.

1.3.12 Notes on Parameter Tuning

Parameter tuning is a dark art in machine learning, the optimal parameters of a model can depend on many scenarios.
So it is impossible to create a comprehensive guide for doing so.

This document tries to provide some guideline for parameters in XGBoost.

Understanding Bias-Variance Tradeoff

If you take a machine learning or statistics course, this is likely to be one of the most important concepts. When
we allow the model to get more complicated (e.g. more depth), the model has better ability to fit the training data,
resulting in a less biased model. However, such complicated model requires more data to fit.

Most of parameters in XGBoost are about bias variance tradeoff. The best model should trade the model complexity
with its predictive power carefully. Parameters Documentation will tell you whether each parameter will make the
model more conservative or not. This can be used to help you turn the knob between complicated model and simple
model.

Control Overfitting

When you observe high training accuracy, but low test accuracy, it is likely that you encountered overfitting problem.

There are in general two ways that you can control overfitting in XGBoost:

• The first way is to directly control model complexity.

– This includes max_depth, min_child_weight and gamma.

• The second way is to add randomness to make training robust to noise.

– This includes subsample and colsample_bytree.

– You can also reduce stepsize eta. Remember to increase num_round when you do so.

52 Chapter 1. Contents

xgboost, Release 1.2.1

Faster training performance

There’s a parameter called tree_method, set it to hist or gpu_hist for faster computation.

Handle Imbalanced Dataset

For common cases such as ads clickthrough log, the dataset is extremely imbalanced. This can affect the training of
XGBoost model, and there are two ways to improve it.

• If you care only about the overall performance metric (AUC) of your prediction

– Balance the positive and negative weights via scale_pos_weight

– Use AUC for evaluation

• If you care about predicting the right probability

– In such a case, you cannot re-balance the dataset

– Set parameter max_delta_step to a finite number (say 1) to help convergence

1.3.13 Using XGBoost External Memory Version

There is no big difference between using external memory version and in-memory version. The only difference is the
filename format.

The external memory version takes in the following URI format:

filename#cacheprefix

The filename is the normal path to libsvm format file you want to load in, and cacheprefix is a path to a cache
file that XGBoost will use for caching preprocessed data in binary form.

To load from csv files, use the following syntax:

filename.csv?format=csv&label_column=0#cacheprefix

where label_column should point to the csv column acting as the label.

To provide a simple example for illustration, extracting the code from demo/guide-python/external_memory.py. If you
have a dataset stored in a file similar to agaricus.txt.train with libSVM format, the external memory support
can be enabled by:

dtrain = DMatrix('../data/agaricus.txt.train#dtrain.cache')

XGBoost will first load agaricus.txt.train in, preprocess it, then write to a new file named dtrain.cache
as an on disk cache for storing preprocessed data in an internal binary format. For more notes about text input formats,
see Text Input Format of DMatrix.

For CLI version, simply add the cache suffix, e.g. "../data/agaricus.txt.train#dtrain.cache".

1.3. XGBoost Tutorials 53

https://en.wikipedia.org/wiki/Uniform_Resource_Identifier
https://github.com/dmlc/xgboost/blob/master/demo/guide-python/external_memory.py

xgboost, Release 1.2.1

GPU Version

External memory is fully supported in GPU algorithms (i.e. when tree_method is set to gpu_hist).

If you are still getting out-of-memory errors after enabling external memory, try subsampling the data to further reduce
GPU memory usage:

param = {
...
'subsample': 0.1,
'sampling_method': 'gradient_based',

}

For more information, see this paper.

Distributed Version

The external memory mode naturally works on distributed version, you can simply set path like

data = "hdfs://path-to-data/#dtrain.cache"

XGBoost will cache the data to the local position. When you run on YARN, the current folder is temporary so that
you can directly use dtrain.cache to cache to current folder.

Limitations

• The hist tree method hasn’t been tested thoroughly with external memory support (see this issue).

• OSX is not tested.

1.3.14 Custom Objective and Evaluation Metric

XGBoost is designed to be an extensible library. One way to extend it is by providing our own objective function for
training and corresponding metric for performance monitoring. This document introduces implementing a customized
elementwise evaluation metric and objective for XGBoost. Although the introduction uses Python for demonstration,
the concepts should be readily applicable to other language bindings.

Note:

• The ranking task does not support customized functions.

• The customized functions defined here are only applicable to single node training. Distributed environment
requires syncing with xgboost.rabit, the interface is subject to change hence beyond the scope of this
tutorial.

• We also plan to improve the interface for multi-classes objective in the future.

In the following sections, we will provide a step by step walk through of implementing Squared Log
Error(SLE) objective function:

1

2
[𝑙𝑜𝑔(𝑝𝑟𝑒𝑑 + 1) − 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2

54 Chapter 1. Contents

https://arxiv.org/abs/2005.09148
https://github.com/dmlc/xgboost/issues/4093

xgboost, Release 1.2.1

and its default metric Root Mean Squared Log Error(RMSLE):√︂
1

𝑁
[𝑙𝑜𝑔(𝑝𝑟𝑒𝑑 + 1) − 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2

Although XGBoost has native support for said functions, using it for demonstration provides us the opportunity of
comparing the result from our own implementation and the one from XGBoost internal for learning purposes. After
finishing this tutorial, we should be able to provide our own functions for rapid experiments.

Customized Objective Function

During model training, the objective function plays an important role: provide gradient information, both first and
second order gradient, based on model predictions and observed data labels (or targets). Therefore, a valid objective
function should accept two inputs, namely prediction and labels. For implementing SLE, we define:

import numpy as np
import xgboost as xgb

def gradient(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
'''Compute the gradient squared log error.'''
y = dtrain.get_label()
return (np.log1p(predt) - np.log1p(y)) / (predt + 1)

def hessian(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
'''Compute the hessian for squared log error.'''
y = dtrain.get_label()
return ((-np.log1p(predt) + np.log1p(y) + 1) /

np.power(predt + 1, 2))

def squared_log(predt: np.ndarray,
dtrain: xgb.DMatrix) -> Tuple[np.ndarray, np.ndarray]:

'''Squared Log Error objective. A simplified version for RMSLE used as
objective function.
'''
predt[predt < -1] = -1 + 1e-6
grad = gradient(predt, dtrain)
hess = hessian(predt, dtrain)
return grad, hess

In the above code snippet, squared_log is the objective function we want. It accepts a numpy array predt as
model prediction, and the training DMatrix for obtaining required information, including labels and weights (not used
here). This objective is then used as a callback function for XGBoost during training by passing it as an argument to
xgb.train:

xgb.train({'tree_method': 'hist', 'seed': 1994}, # any other tree method is fine.
dtrain=dtrain,
num_boost_round=10,
obj=squared_log)

Notice that in our definition of the objective, whether we subtract the labels from the prediction or the other way
around is important. If you find the training error goes up instead of down, this might be the reason.

1.3. XGBoost Tutorials 55

xgboost, Release 1.2.1

Customized Metric Function

So after having a customized objective, we might also need a corresponding metric to monitor our model’s perfor-
mance. As mentioned above, the default metric for SLE is RMSLE. Similarly we define another callback like function
as the new metric:

def rmsle(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
''' Root mean squared log error metric.'''
y = dtrain.get_label()
predt[predt < -1] = -1 + 1e-6
elements = np.power(np.log1p(y) - np.log1p(predt), 2)
return 'PyRMSLE', float(np.sqrt(np.sum(elements) / len(y)))

Since we are demonstrating in Python, the metric or objective needs not be a function, any callable object should
suffice. Similarly to the objective function, our metric also accepts predt and dtrain as inputs, but returns the
name of metric itself and a floating point value as result. After passing it into XGBoost as argument of feval
parameter:

xgb.train({'tree_method': 'hist', 'seed': 1994,
'disable_default_eval_metric': 1},

dtrain=dtrain,
num_boost_round=10,
obj=squared_log,
feval=rmsle,
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
evals_result=results)

We will be able to see XGBoost printing something like:

[0] dtrain-PyRMSLE:1.37153 dtest-PyRMSLE:1.31487
[1] dtrain-PyRMSLE:1.26619 dtest-PyRMSLE:1.20899
[2] dtrain-PyRMSLE:1.17508 dtest-PyRMSLE:1.11629
[3] dtrain-PyRMSLE:1.09836 dtest-PyRMSLE:1.03871
[4] dtrain-PyRMSLE:1.03557 dtest-PyRMSLE:0.977186
[5] dtrain-PyRMSLE:0.985783 dtest-PyRMSLE:0.93057
...

Notice that the parameter disable_default_eval_metric is used to suppress the default metric in XGBoost.

For fully reproducible source code and comparison plots, see custom_rmsle.py.

56 Chapter 1. Contents

https://github.com/dmlc/xgboost/tree/master/demo/guide-python/custom_rmsle.py

xgboost, Release 1.2.1

Multi-class objective function

A similiar demo for multi-class objective funtion is also available, see demo/guide-python/custom_softmax.py for
details.

1.4 Frequently Asked Questions

This document contains frequently asked questions about XGBoost.

1.4.1 How to tune parameters

See Parameter Tuning Guide.

1.4.2 Description on the model

See Introduction to Boosted Trees.

1.4.3 I have a big dataset

XGBoost is designed to be memory efficient. Usually it can handle problems as long as the data fit into your memory.
(This usually means millions of instances) If you are running out of memory, checkout external memory version or
distributed version of XGBoost.

1.4.4 Running XGBoost on Platform X (Hadoop/Yarn, Mesos)

The distributed version of XGBoost is designed to be portable to various environment. Distributed XGBoost can be
ported to any platform that supports rabit. You can directly run XGBoost on Yarn. In theory Mesos and other resource
allocation engines can be easily supported as well.

1.4.5 Why not implement distributed XGBoost on top of X (Spark, Hadoop)

The first fact we need to know is going distributed does not necessarily solve all the problems. Instead, it creates more
problems such as more communication overhead and fault tolerance. The ultimate question will still come back to how
to push the limit of each computation node and use less resources to complete the task (thus with less communication
and chance of failure).

To achieve these, we decide to reuse the optimizations in the single node XGBoost and build distributed version on
top of it. The demand of communication in machine learning is rather simple, in the sense that we can depend on a
limited set of API (in our case rabit). Such design allows us to reuse most of the code, while being portable to major
platforms such as Hadoop/Yarn, MPI, SGE. Most importantly, it pushes the limit of the computation resources we can
use.

1.4. Frequently Asked Questions 57

https://github.com/dmlc/xgboost/tree/master/demo/guide-python/custom_rmsle.py
https://github.com/dmlc/rabit

xgboost, Release 1.2.1

1.4.6 How can I port the model to my own system

The model and data format of XGBoost is exchangeable, which means the model trained by one language can be
loaded in another. This means you can train the model using R, while running prediction using Java or C++, which are
more common in production systems. You can also train the model using distributed versions, and load them in from
Python to do some interactive analysis.

1.4.7 Do you support LambdaMART

Yes, XGBoost implements LambdaMART. Checkout the objective section in parameters.

1.4.8 How to deal with Missing Value

XGBoost supports missing value by default. In tree algorithms, branch directions for missing values are learned during
training. Note that the gblinear booster treats missing values as zeros.

1.4.9 Slightly different result between runs

This could happen, due to non-determinism in floating point summation order and multi-threading. Though the general
accuracy will usually remain the same.

1.4.10 Why do I see different results with sparse and dense data?

“Sparse” elements are treated as if they were “missing” by the tree booster, and as zeros by the linear booster. For tree
models, it is important to use consistent data formats during training and scoring.

1.5 XGBoost GPU Support

This page contains information about GPU algorithms supported in XGBoost. To install GPU support, checkout the
Installation Guide.

Note: CUDA 10.0, Compute Capability 3.5 required

The GPU algorithms in XGBoost require a graphics card with compute capability 3.5 or higher, with CUDA toolkits
10.0 or later. (See this list to look up compute capability of your GPU card.)

1.5.1 CUDA Accelerated Tree Construction Algorithms

Tree construction (training) and prediction can be accelerated with CUDA-capable GPUs.

58 Chapter 1. Contents

https://en.wikipedia.org/wiki/CUDA#GPUs_supported

xgboost, Release 1.2.1

Usage

Specify the tree_method parameter as one of the following algorithms.

Algorithms

tree_methodDescription
gpu_hist Equivalent to the XGBoost fast histogram algorithm. Much faster and uses considerably less memory.

NOTE: May run very slowly on GPUs older than Pascal architecture.

Supported parameters

parameter gpu_hist
subsample XXX
sampling_method XXX
colsample_bytree XXX
colsample_bylevel XXX
max_bin XXX
gamma XXX
gpu_id XXX
predictor XXX
grow_policy XXX
monotone_constraints XXX
interaction_constraints XXX
single_precision_histogram XXX

GPU accelerated prediction is enabled by default for the above mentioned tree_method parameters but can be
switched to CPU prediction by setting predictor to cpu_predictor. This could be useful if you want to
conserve GPU memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting
predictor to gpu_predictor.

The experimental parameter single_precision_histogram can be set to True to enable building histograms
using single precision. This may improve speed, in particular on older architectures.

The device ordinal (which GPU to use if you have many of them) can be selected using the gpu_id parameter, which
defaults to 0 (the first device reported by CUDA runtime).

The GPU algorithms currently work with CLI, Python and R packages. See Installation Guide for details.

Listing 13: Python example

param['gpu_id'] = 0
param['tree_method'] = 'gpu_hist'

1.5. XGBoost GPU Support 59

xgboost, Release 1.2.1

Listing 14: With Scikit-Learn interface

XGBRegressor(tree_method='gpu_hist', gpu_id=0)

Multi-node Multi-GPU Training

XGBoost supports fully distributed GPU training using Dask. For getting started see our tutorial Distributed XGBoost
with Dask and worked examples here, also Python documentation Dask API for complete reference.

Objective functions

Most of the objective functions implemented in XGBoost can be run on GPU. Following table shows current support
status.

Objectives GPU support
reg:squarederror XXX
reg:squaredlogerror XXX
reg:logistic XXX
reg:pseudohubererror XXX
binary:logistic XXX
binary:logitraw XXX
binary:hinge XXX
count:poisson XXX
reg:gamma XXX
reg:tweedie XXX
multi:softmax XXX
multi:softprob XXX
survival:cox
survival:aft XXX
rank:pairwise XXX
rank:ndcg XXX
rank:map XXX

Objective will run on GPU if GPU updater (gpu_hist), otherwise they will run on CPU by default. For unsupported
objectives XGBoost will fall back to using CPU implementation by default. Note that when using GPU ranking
objective, the result is not deterministic due to the non-associative aspect of floating point summation.

Metric functions

Following table shows current support status for evaluation metrics on the GPU.

60 Chapter 1. Contents

https://dask.org/
https://github.com/dmlc/xgboost/tree/master/demo/dask

xgboost, Release 1.2.1

Metric GPU Support
rmse XXX
rmsle XXX
mae XXX
mphe XXX
logloss XXX
error XXX
merror XXX
mlogloss XXX
auc XXX
aucpr
ndcg XXX
map XXX
poisson-nloglik XXX
gamma-nloglik XXX
cox-nloglik
aft-nloglik XXX
interval-regression-accuracy XXX
gamma-deviance XXX
tweedie-nloglik XXX

Similar to objective functions, default device for metrics is selected based on tree updater and predictor (which is
selected based on tree updater).

Benchmarks

You can run benchmarks on synthetic data for binary classification:

python tests/benchmark/benchmark_tree.py --tree_method=gpu_hist
python tests/benchmark/benchmark_tree.py --tree_method=hist

Training time on 1,000,000 rows x 50 columns of random data with 500 boosting iterations and 0.25/0.75 test/train
split with AMD Ryzen 7 2700 8 core @3.20GHz and Nvidia 1080ti yields the following results:

tree_method Time (s)
gpu_hist 12.57
hist 36.01

Memory usage

The following are some guidelines on the device memory usage of the gpu_hist updater.

If you train xgboost in a loop you may notice xgboost is not freeing device memory after each training iteration. This
is because memory is allocated over the lifetime of the booster object and does not get freed until the booster is freed.
A workaround is to serialise the booster object after training. See demo/gpu_acceleration/memory.py for a simple
example.

Memory inside xgboost training is generally allocated for two reasons - storing the dataset and working memory.

The dataset itself is stored on device in a compressed ELLPACK format. The ELLPACK format is a type of sparse ma-
trix that stores elements with a constant row stride. This format is convenient for parallel computation when compared
to CSR because the row index of each element is known directly from its address in memory. The disadvantage of the

1.5. XGBoost GPU Support 61

xgboost, Release 1.2.1

ELLPACK format is that it becomes less memory efficient if the maximum row length is significantly more than the
average row length. Elements are quantised and stored as integers. These integers are compressed to a minimum bit
length. Depending on the number of features, we usually don’t need the full range of a 32 bit integer to store elements
and so compress this down. The compressed, quantised ELLPACK format will commonly use 1/4 the space of a CSR
matrix stored in floating point.

In some cases the full CSR matrix stored in floating point needs to be allocated on the device. This currently occurs
for prediction in multiclass classification. If this is a problem consider setting ‘predictor’=’cpu_predictor’. This also
occurs when the external data itself comes from a source on device e.g. a cudf DataFrame. These are known issues
we hope to resolve.

Working memory is allocated inside the algorithm proportional to the number of rows to keep track of gradients, tree
positions and other per row statistics. Memory is allocated for histogram bins proportional to the number of bins,
number of features and nodes in the tree. For performance reasons we keep histograms in memory from previous
nodes in the tree, when a certain threshold of memory usage is passed we stop doing this to conserve memory at some
performance loss.

The quantile finding algorithm also uses some amount of working device memory. It is able to operate in batches, but
is not currently well optimised for sparse data.

If you are getting out-of-memory errors on a big dataset, try the external memory version.

Developer notes

The application may be profiled with annotations by specifying USE_NTVX to cmake and providing the path to
the stand-alone nvtx header via NVTX_HEADER_DIR. Regions covered by the ‘Monitor’ class in cuda code will
automatically appear in the nsight profiler.

1.5.2 References

Mitchell R, Frank E. (2017) Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science
3:e127 https://doi.org/10.7717/peerj-cs.127

Nvidia Parallel Forall: Gradient Boosting, Decision Trees and XGBoost with CUDA

Out-of-Core GPU Gradient Boosting

Contributors

Many thanks to the following contributors (alphabetical order):

• Andrey Adinets

• Jiaming Yuan

• Jonathan C. McKinney

• Matthew Jones

• Philip Cho

• Rong Ou

• Rory Mitchell

• Shankara Rao Thejaswi Nanditale

• Sriram Chandramouli

• Vinay Deshpande

62 Chapter 1. Contents

../tutorials/external_memory.html
https://peerj.com/articles/cs-127/
https://peerj.com/articles/cs-127/
https://devblogs.nvidia.com/parallelforall/gradient-boosting-decision-trees-xgboost-cuda/
https://arxiv.org/abs/2005.09148

xgboost, Release 1.2.1

Please report bugs to the XGBoost issues list: https://github.com/dmlc/xgboost/issues. For general questions please
visit our user form: https://discuss.xgboost.ai/.

1.6 XGBoost Parameters

Before running XGBoost, we must set three types of parameters: general parameters, booster parameters and task
parameters.

• General parameters relate to which booster we are using to do boosting, commonly tree or linear model

• Booster parameters depend on which booster you have chosen

• Learning task parameters decide on the learning scenario. For example, regression tasks may use different
parameters with ranking tasks.

• Command line parameters relate to behavior of CLI version of XGBoost.

Note: Parameters in R package

In R-package, you can use . (dot) to replace underscore in the parameters, for example, you can use max.depth to
indicate max_depth. The underscore parameters are also valid in R.

• General Parameters

– Parameters for Tree Booster

– Additional parameters for hist and ‘gpu_hist’ tree method

– Additional parameters for gpu_hist tree method

– Additional parameters for Dart Booster (booster=dart)

– Parameters for Linear Booster (booster=gblinear)

– Parameters for Tweedie Regression (objective=reg:tweedie)

• Learning Task Parameters

• Command Line Parameters

1.6.1 General Parameters

• booster [default= gbtree]

– Which booster to use. Can be gbtree, gblinear or dart; gbtree and dart use tree based models
while gblinear uses linear functions.

• verbosity [default=1]

– Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug). Sometimes
XGBoost tries to change configurations based on heuristics, which is displayed as warning message. If
there’s unexpected behaviour, please try to increase value of verbosity.

• validate_parameters [default to false, except for Python, R and CLI interface]

– When set to True, XGBoost will perform validation of input parameters to check whether a parameter is
used or not. The feature is still experimental. It’s expected to have some false positives.

1.6. XGBoost Parameters 63

https://github.com/dmlc/xgboost/issues
https://discuss.xgboost.ai/

xgboost, Release 1.2.1

• nthread [default to maximum number of threads available if not set]

– Number of parallel threads used to run XGBoost

• disable_default_eval_metric [default=``false``]

– Flag to disable default metric. Set to 1 or true to disable.

• num_pbuffer [set automatically by XGBoost, no need to be set by user]

– Size of prediction buffer, normally set to number of training instances. The buffers are used to save the
prediction results of last boosting step.

• num_feature [set automatically by XGBoost, no need to be set by user]

– Feature dimension used in boosting, set to maximum dimension of the feature

Parameters for Tree Booster

• eta [default=0.3, alias: learning_rate]

– Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get
the weights of new features, and eta shrinks the feature weights to make the boosting process more
conservative.

– range: [0,1]

• gamma [default=0, alias: min_split_loss]

– Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma
is, the more conservative the algorithm will be.

– range: [0,∞]

• max_depth [default=6]

– Maximum depth of a tree. Increasing this value will make the model more complex and more likely to
overfit. 0 is only accepted in lossguided growing policy when tree_method is set as hist and it
indicates no limit on depth. Beware that XGBoost aggressively consumes memory when training a deep
tree.

– range: [0,∞] (0 is only accepted in lossguided growing policy when tree_method is set as hist)

• min_child_weight [default=1]

– Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf node
with the sum of instance weight less than min_child_weight, then the building process will give up
further partitioning. In linear regression task, this simply corresponds to minimum number of instances
needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will
be.

– range: [0,∞]

• max_delta_step [default=0]

– Maximum delta step we allow each leaf output to be. If the value is set to 0, it means there is no constraint.
If it is set to a positive value, it can help making the update step more conservative. Usually this parameter
is not needed, but it might help in logistic regression when class is extremely imbalanced. Set it to value
of 1-10 might help control the update.

– range: [0,∞]

• subsample [default=1]

64 Chapter 1. Contents

xgboost, Release 1.2.1

– Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample
half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur
once in every boosting iteration.

– range: (0,1]

• sampling_method [default= uniform]

– The method to use to sample the training instances.

– uniform: each training instance has an equal probability of being selected. Typically set subsample
>= 0.5 for good results.

– gradient_based: the selection probability for each training instance is proportional to the regularized
absolute value of gradients (more specifically,

√︀
𝑔2 + 𝜆ℎ2). subsample may be set to as low as 0.1

without loss of model accuracy. Note that this sampling method is only supported when tree_method
is set to gpu_hist; other tree methods only support uniform sampling.

• colsample_bytree, colsample_bylevel, colsample_bynode [default=1]

– This is a family of parameters for subsampling of columns.

– All colsample_by* parameters have a range of (0, 1], the default value of 1, and specify the fraction
of columns to be subsampled.

– colsample_bytree is the subsample ratio of columns when constructing each tree. Subsampling
occurs once for every tree constructed.

– colsample_bylevel is the subsample ratio of columns for each level. Subsampling occurs once for
every new depth level reached in a tree. Columns are subsampled from the set of columns chosen for the
current tree.

– colsample_bynode is the subsample ratio of columns for each node (split). Subsampling occurs once
every time a new split is evaluated. Columns are subsampled from the set of columns chosen for the current
level.

– colsample_by* parameters work cumulatively. For instance, the com-
bination {'colsample_bytree':0.5, 'colsample_bylevel':0.5,
'colsample_bynode':0.5} with 64 features will leave 8 features to choose from at each
split.

• lambda [default=1, alias: reg_lambda]

– L2 regularization term on weights. Increasing this value will make model more conservative.

• alpha [default=0, alias: reg_alpha]

– L1 regularization term on weights. Increasing this value will make model more conservative.

• tree_method string [default= auto]

– The tree construction algorithm used in XGBoost. See description in the reference paper.

– XGBoost supports approx, hist and gpu_hist for distributed training. Experimental support for
external memory is available for approx and gpu_hist.

– Choices: auto, exact, approx, hist, gpu_hist, this is a combination of commonly used updaters.
For other updaters like refresh, set the parameter updater directly.

* auto: Use heuristic to choose the fastest method.

· For small dataset, exact greedy (exact) will be used.

1.6. XGBoost Parameters 65

http://arxiv.org/abs/1603.02754

xgboost, Release 1.2.1

· For larger dataset, approximate algorithm (approx) will be chosen. It’s recommended to try
hist and gpu_hist for higher performance with large dataset. (gpu_hist)has support for
external memory.

· Because old behavior is always use exact greedy in single machine, user will get a message when
approximate algorithm is chosen to notify this choice.

* exact: Exact greedy algorithm. Enumerates all split candidates.

* approx: Approximate greedy algorithm using quantile sketch and gradient histogram.

* hist: Faster histogram optimized approximate greedy algorithm.

* gpu_hist: GPU implementation of hist algorithm.

• sketch_eps [default=0.03]

– Only used for tree_method=approx.

– This roughly translates into O(1 / sketch_eps) number of bins. Compared to directly select number
of bins, this comes with theoretical guarantee with sketch accuracy.

– Usually user does not have to tune this. But consider setting to a lower number for more accurate enumer-
ation of split candidates.

– range: (0, 1)

• scale_pos_weight [default=1]

– Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to con-
sider: sum(negative instances) / sum(positive instances). See Parameters Tuning
for more discussion. Also, see Higgs Kaggle competition demo for examples: R, py1, py2, py3.

• updater [default= grow_colmaker,prune]

– A comma separated string defining the sequence of tree updaters to run, providing a modular way to con-
struct and to modify the trees. This is an advanced parameter that is usually set automatically, depending
on some other parameters. However, it could be also set explicitly by a user. The following updaters exist:

* grow_colmaker: non-distributed column-based construction of trees.

* grow_histmaker: distributed tree construction with row-based data splitting based on global pro-
posal of histogram counting.

* grow_local_histmaker: based on local histogram counting.

* grow_skmaker: uses the approximate sketching algorithm.

* grow_quantile_histmaker: Grow tree using quantized histogram.

* grow_gpu_hist: Grow tree with GPU.

* sync: synchronizes trees in all distributed nodes.

* refresh: refreshes tree’s statistics and/or leaf values based on the current data. Note that no random
subsampling of data rows is performed.

* prune: prunes the splits where loss < min_split_loss (or gamma).

– In a distributed setting, the implicit updater sequence value would be adjusted to grow_histmaker,
prune by default, and you can set tree_method as hist to use grow_histmaker.

• refresh_leaf [default=1]

– This is a parameter of the refresh updater. When this flag is 1, tree leafs as well as tree nodes’ stats are
updated. When it is 0, only node stats are updated.

66 Chapter 1. Contents

https://github.com/dmlc/xgboost/blob/master/demo/kaggle-higgs/higgs-train.R
https://github.com/dmlc/xgboost/blob/master/demo/kaggle-higgs/higgs-numpy.py
https://github.com/dmlc/xgboost/blob/master/demo/kaggle-higgs/higgs-cv.py
https://github.com/dmlc/xgboost/blob/master/demo/guide-python/cross_validation.py

xgboost, Release 1.2.1

• process_type [default= default]

– A type of boosting process to run.

– Choices: default, update

* default: The normal boosting process which creates new trees.

* update: Starts from an existing model and only updates its trees. In each boosting iteration, a
tree from the initial model is taken, a specified sequence of updaters is run for that tree, and a
modified tree is added to the new model. The new model would have either the same or smaller
number of trees, depending on the number of boosting iteratons performed. Currently, the follow-
ing built-in updaters could be meaningfully used with this process type: refresh, prune. With
process_type=update, one cannot use updaters that create new trees.

• grow_policy [default= depthwise]

– Controls a way new nodes are added to the tree.

– Currently supported only if tree_method is set to hist.

– Choices: depthwise, lossguide

* depthwise: split at nodes closest to the root.

* lossguide: split at nodes with highest loss change.

• max_leaves [default=0]

– Maximum number of nodes to be added. Only relevant when grow_policy=lossguide is set.

• max_bin, [default=256]

– Only used if tree_method is set to hist.

– Maximum number of discrete bins to bucket continuous features.

– Increasing this number improves the optimality of splits at the cost of higher computation time.

• predictor, [default=``auto``]

– The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU.

* auto: Configure predictor based on heuristics.

* cpu_predictor: Multicore CPU prediction algorithm.

* gpu_predictor: Prediction using GPU. Used when tree_method is gpu_hist. When
predictor is set to default value auto, the gpu_hist tree method is able to provide GPU based
prediction without copying training data to GPU memory. If gpu_predictor is explicitly speci-
fied, then all data is copied into GPU, only recommended for performing prediction tasks.

• num_parallel_tree, [default=1] - Number of parallel trees constructed during each iteration. This option
is used to support boosted random forest.

• monotone_constraints

– Constraint of variable monotonicity. See tutorial for more information.

• interaction_constraints

– Constraints for interaction representing permitted interactions. The constraints must be specified in the
form of a nest list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of indices of features
that are allowed to interact with each other. See tutorial for more information

1.6. XGBoost Parameters 67

xgboost, Release 1.2.1

Additional parameters for hist and ‘gpu_hist’ tree method

• single_precision_histogram, [default=``false``]

– Use single precision to build histograms instead of double precision.

Additional parameters for gpu_hist tree method

• deterministic_histogram, [default=``true``]

– Build histogram on GPU deterministically. Histogram building is not deterministic due to the non-
associative aspect of floating point summation. We employ a pre-rounding routine to mitigate the issue,
which may lead to slightly lower accuracy. Set to false to disable it.

Additional parameters for Dart Booster (booster=dart)

Note: Using predict() with DART booster

If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be evalu-
ated. This will produce incorrect results if data is not the training data. To obtain correct results on test sets, set
ntree_limit to a nonzero value, e.g.

preds = bst.predict(dtest, ntree_limit=num_round)

• sample_type [default= uniform]

– Type of sampling algorithm.

* uniform: dropped trees are selected uniformly.

* weighted: dropped trees are selected in proportion to weight.

• normalize_type [default= tree]

– Type of normalization algorithm.

* tree: new trees have the same weight of each of dropped trees.

· Weight of new trees are 1 / (k + learning_rate).

· Dropped trees are scaled by a factor of k / (k + learning_rate).

* forest: new trees have the same weight of sum of dropped trees (forest).

· Weight of new trees are 1 / (1 + learning_rate).

· Dropped trees are scaled by a factor of 1 / (1 + learning_rate).

• rate_drop [default=0.0]

– Dropout rate (a fraction of previous trees to drop during the dropout).

– range: [0.0, 1.0]

• one_drop [default=0]

– When this flag is enabled, at least one tree is always dropped during the dropout (allows Binomial-plus-one
or epsilon-dropout from the original DART paper).

• skip_drop [default=0.0]

68 Chapter 1. Contents

xgboost, Release 1.2.1

– Probability of skipping the dropout procedure during a boosting iteration.

* If a dropout is skipped, new trees are added in the same manner as gbtree.

* Note that non-zero skip_drop has higher priority than rate_drop or one_drop.

– range: [0.0, 1.0]

Parameters for Linear Booster (booster=gblinear)

• lambda [default=0, alias: reg_lambda]

– L2 regularization term on weights. Increasing this value will make model more conservative. Normalised
to number of training examples.

• alpha [default=0, alias: reg_alpha]

– L1 regularization term on weights. Increasing this value will make model more conservative. Normalised
to number of training examples.

• updater [default= shotgun]

– Choice of algorithm to fit linear model

* shotgun: Parallel coordinate descent algorithm based on shotgun algorithm. Uses ‘hogwild’ paral-
lelism and therefore produces a nondeterministic solution on each run.

* coord_descent: Ordinary coordinate descent algorithm. Also multithreaded but still produces a
deterministic solution.

• feature_selector [default= cyclic]

– Feature selection and ordering method

* cyclic: Deterministic selection by cycling through features one at a time.

* shuffle: Similar to cyclic but with random feature shuffling prior to each update.

* random: A random (with replacement) coordinate selector.

* greedy: Select coordinate with the greatest gradient magnitude. It has O(num_feature^2)
complexity. It is fully deterministic. It allows restricting the selection to top_k features per group
with the largest magnitude of univariate weight change, by setting the top_k parameter. Doing so
would reduce the complexity to O(num_feature*top_k).

* thrifty: Thrifty, approximately-greedy feature selector. Prior to cyclic updates, reorders features
in descending magnitude of their univariate weight changes. This operation is multithreaded and is a
linear complexity approximation of the quadratic greedy selection. It allows restricting the selection
to top_k features per group with the largest magnitude of univariate weight change, by setting the
top_k parameter.

• top_k [default=0]

– The number of top features to select in greedy and thrifty feature selector. The value of 0 means
using all the features.

1.6. XGBoost Parameters 69

xgboost, Release 1.2.1

Parameters for Tweedie Regression (objective=reg:tweedie)

• tweedie_variance_power [default=1.5]

– Parameter that controls the variance of the Tweedie distribution var(y) ~
E(y)^tweedie_variance_power

– range: (1,2)

– Set closer to 2 to shift towards a gamma distribution

– Set closer to 1 to shift towards a Poisson distribution.

1.6.2 Learning Task Parameters

Specify the learning task and the corresponding learning objective. The objective options are below:

• objective [default=reg:squarederror]

– reg:squarederror: regression with squared loss.

– reg:squaredlogerror: regression with squared log loss 1
2 [𝑙𝑜𝑔(𝑝𝑟𝑒𝑑+1)−𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙+1)]2. All input

labels are required to be greater than -1. Also, see metric rmsle for possible issue with this objective.

– reg:logistic: logistic regression

– reg:pseudohubererror: regression with Pseudo Huber loss, a twice differentiable alternative to
absolute loss.

– binary:logistic: logistic regression for binary classification, output probability

– binary:logitraw: logistic regression for binary classification, output score before logistic transfor-
mation

– binary:hinge: hinge loss for binary classification. This makes predictions of 0 or 1, rather than
producing probabilities.

– count:poisson –poisson regression for count data, output mean of poisson distribution

* max_delta_step is set to 0.7 by default in poisson regression (used to safeguard optimization)

– survival:cox: Cox regression for right censored survival time data (negative values are consid-
ered right censored). Note that predictions are returned on the hazard ratio scale (i.e., as HR =
exp(marginal_prediction) in the proportional hazard function h(t) = h0(t) * HR).

– survival:aft: Accelerated failure time model for censored survival time data. See Survival Analysis
with Accelerated Failure Time for details.

– aft_loss_distribution: Probabilty Density Function used by survival:aft objective and
aft-nloglik metric.

– multi:softmax: set XGBoost to do multiclass classification using the softmax objective, you also need
to set num_class(number of classes)

– multi:softprob: same as softmax, but output a vector of ndata * nclass, which can be further
reshaped to ndata * nclass matrix. The result contains predicted probability of each data point
belonging to each class.

– rank:pairwise: Use LambdaMART to perform pairwise ranking where the pairwise loss is minimized

– rank:ndcg: Use LambdaMART to perform list-wise ranking where Normalized Discounted Cumulative
Gain (NDCG) is maximized

70 Chapter 1. Contents

http://en.wikipedia.org/wiki/NDCG
http://en.wikipedia.org/wiki/NDCG

xgboost, Release 1.2.1

– rank:map: Use LambdaMART to perform list-wise ranking where Mean Average Precision (MAP) is
maximized

– reg:gamma: gamma regression with log-link. Output is a mean of gamma distribution. It might be
useful, e.g., for modeling insurance claims severity, or for any outcome that might be gamma-distributed.

– reg:tweedie: Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in
insurance, or for any outcome that might be Tweedie-distributed.

• base_score [default=0.5]

– The initial prediction score of all instances, global bias

– For sufficient number of iterations, changing this value will not have too much effect.

• eval_metric [default according to objective]

– Evaluation metrics for validation data, a default metric will be assigned according to objective (rmse for
regression, and error for classification, mean average precision for ranking)

– User can add multiple evaluation metrics. Python users: remember to pass the metrics in as list of param-
eters pairs instead of map, so that latter eval_metric won’t override previous one

– The choices are listed below:

* rmse: root mean square error

* rmsle: root mean square log error:
√︁

1
𝑁 [𝑙𝑜𝑔(𝑝𝑟𝑒𝑑 + 1) − 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2. Default metric of

reg:squaredlogerror objective. This metric reduces errors generated by outliers in dataset.
But because log function is employed, rmsle might output nan when prediction value is less than
-1. See reg:squaredlogerror for other requirements.

* mae: mean absolute error

* mphe: mean Pseudo Huber error. Default metric of reg:pseudohubererror objective.

* logloss: negative log-likelihood

* error: Binary classification error rate. It is calculated as #(wrong cases)/#(all cases).
For the predictions, the evaluation will regard the instances with prediction value larger than 0.5 as
positive instances, and the others as negative instances.

* error@t: a different than 0.5 binary classification threshold value could be specified by providing a
numerical value through ‘t’.

* merror: Multiclass classification error rate. It is calculated as #(wrong cases)/#(all
cases).

* mlogloss: Multiclass logloss.

* auc: Area under the curve

* aucpr: Area under the PR curve

* ndcg: Normalized Discounted Cumulative Gain

* map: Mean Average Precision

* ndcg@n, map@n: ‘n’ can be assigned as an integer to cut off the top positions in the lists for evalua-
tion.

* ndcg-, map-, ndcg@n-, map@n-: In XGBoost, NDCG and MAP will evaluate the score of a list
without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these
score as 0 to be consistent under some conditions.

* poisson-nloglik: negative log-likelihood for Poisson regression

1.6. XGBoost Parameters 71

http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision
https://en.wikipedia.org/wiki/Gamma_distribution#Applications
https://en.wikipedia.org/wiki/Tweedie_distribution#Applications
http://en.wikipedia.org/wiki/Root_mean_square_error
https://en.wikipedia.org/wiki/Mean_absolute_error
https://en.wikipedia.org/wiki/Huber_loss
http://en.wikipedia.org/wiki/Log-likelihood
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
http://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_curve
https://en.wikipedia.org/wiki/Precision_and_recall
http://en.wikipedia.org/wiki/NDCG
http://en.wikipedia.org/wiki/Mean_average_precision#Mean_average_precision

xgboost, Release 1.2.1

* gamma-nloglik: negative log-likelihood for gamma regression

* cox-nloglik: negative partial log-likelihood for Cox proportional hazards regression

* gamma-deviance: residual deviance for gamma regression

* tweedie-nloglik: negative log-likelihood for Tweedie regression (at a specified value of the
tweedie_variance_power parameter)

* aft-nloglik: Negative log likelihood of Accelerated Failure Time model. See Survival Analysis
with Accelerated Failure Time for details.

* interval-regression-accuracy: Fraction of data points whose predicted labels fall in the
interval-censored labels. Only applicable for interval-censored data. See Survival Analysis with Ac-
celerated Failure Time for details.

• seed [default=0]

– Random number seed. This parameter is ignored in R package, use set.seed() instead.

1.6.3 Command Line Parameters

The following parameters are only used in the console version of XGBoost

• num_round

– The number of rounds for boosting

• data

– The path of training data

• test:data

– The path of test data to do prediction

• save_period [default=0]

– The period to save the model. Setting save_period=10 means that for every 10 rounds XGBoost will
save the model. Setting it to 0 means not saving any model during the training.

• task [default= train] options: train, pred, eval, dump

– train: training using data

– pred: making prediction for test:data

– eval: for evaluating statistics specified by eval[name]=filename

– dump: for dump the learned model into text format

• model_in [default=NULL]

– Path to input model, needed for test, eval, dump tasks. If it is specified in training, XGBoost will
continue training from the input model.

• model_out [default=NULL]

– Path to output model after training finishes. If not specified, XGBoost will output files with such names as
0003.model where 0003 is number of boosting rounds.

• model_dir [default= models/]

– The output directory of the saved models during training

• fmap

72 Chapter 1. Contents

xgboost, Release 1.2.1

– Feature map, used for dumping model

• dump_format [default= text] options: text, json

– Format of model dump file

• name_dump [default= dump.txt]

– Name of model dump file

• name_pred [default= pred.txt]

– Name of prediction file, used in pred mode

• pred_margin [default=0]

– Predict margin instead of transformed probability

1.7 XGBoost Python Package

This page contains links to all the python related documents on python package. To install the package package,
checkout Installation Guide.

1.7.1 Contents

Python Package Introduction

This document gives a basic walkthrough of xgboost python package.

List of other Helpful Links

• Python walkthrough code collections

• Python API Reference

Install XGBoost

To install XGBoost, follow instructions in Installation Guide.

To verify your installation, run the following in Python:

import xgboost as xgb

Data Interface

The XGBoost python module is able to load data from:

• LibSVM text format file

• Comma-separated values (CSV) file

• NumPy 2D array

• SciPy 2D sparse array

• cuDF DataFrame

• Pandas data frame, and

1.7. XGBoost Python Package 73

https://github.com/tqchen/xgboost/blob/master/demo/guide-python

xgboost, Release 1.2.1

• XGBoost binary buffer file.

(See Text Input Format of DMatrix for detailed description of text input format.)

The data is stored in a DMatrix object.

• To load a libsvm text file or a XGBoost binary file into DMatrix:

dtrain = xgb.DMatrix('train.svm.txt')
dtest = xgb.DMatrix('test.svm.buffer')

• To load a CSV file into DMatrix:

label_column specifies the index of the column containing the true label
dtrain = xgb.DMatrix('train.csv?format=csv&label_column=0')
dtest = xgb.DMatrix('test.csv?format=csv&label_column=0')

Note: Categorical features not supported

Note that XGBoost does not provide specialization for categorical features; if your data contains categorical fea-
tures, load it as a NumPy array first and then perform corresponding preprocessing steps like one-hot encoding.

Note: Use Pandas to load CSV files with headers

Currently, the DMLC data parser cannot parse CSV files with headers. Use Pandas (see below) to read CSV
files with headers.

• To load a NumPy array into DMatrix:

data = np.random.rand(5, 10) # 5 entities, each contains 10 features
label = np.random.randint(2, size=5) # binary target
dtrain = xgb.DMatrix(data, label=label)

• To load a scipy.sparse array into DMatrix:

csr = scipy.sparse.csr_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csr)

• To load a Pandas data frame into DMatrix:

data = pandas.DataFrame(np.arange(12).reshape((4,3)), columns=['a', 'b', 'c'])
label = pandas.DataFrame(np.random.randint(2, size=4))
dtrain = xgb.DMatrix(data, label=label)

• Saving DMatrix into a XGBoost binary file will make loading faster:

dtrain = xgb.DMatrix('train.svm.txt')
dtrain.save_binary('train.buffer')

• Missing values can be replaced by a default value in the DMatrix constructor:

dtrain = xgb.DMatrix(data, label=label, missing=-999.0)

• Weights can be set when needed:

74 Chapter 1. Contents

http://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://docs.scipy.org/doc/scipy/reference/sparse.html#module-scipy.sparse

xgboost, Release 1.2.1

w = np.random.rand(5, 1)
dtrain = xgb.DMatrix(data, label=label, missing=-999.0, weight=w)

When performing ranking tasks, the number of weights should be equal to number of groups.

Setting Parameters

XGBoost can use either a list of pairs or a dictionary to set parameters. For instance:

• Booster parameters

param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
param['nthread'] = 4
param['eval_metric'] = 'auc'

• You can also specify multiple eval metrics:

param['eval_metric'] = ['auc', 'ams@0']

alternatively:
plst = param.items()
plst += [('eval_metric', 'ams@0')]

• Specify validations set to watch performance

evallist = [(dtest, 'eval'), (dtrain, 'train')]

Training

Training a model requires a parameter list and data set.

num_round = 10
bst = xgb.train(param, dtrain, num_round, evallist)

After training, the model can be saved.

bst.save_model('0001.model')

The model and its feature map can also be dumped to a text file.

dump model
bst.dump_model('dump.raw.txt')
dump model with feature map
bst.dump_model('dump.raw.txt', 'featmap.txt')

A saved model can be loaded as follows:

bst = xgb.Booster({'nthread': 4}) # init model
bst.load_model('model.bin') # load data

Methods including update and boost from xgboost.Booster are designed for internal usage only. The wrapper function
xgboost.train does some pre-configuration including setting up caches and some other parameters.

1.7. XGBoost Python Package 75

xgboost, Release 1.2.1

Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds. Early stopping
requires at least one set in evals. If there’s more than one, it will use the last.

train(..., evals=evals, early_stopping_rounds=10)

The model will train until the validation score stops improving. Validation error needs to decrease at least every
early_stopping_rounds to continue training.

If early stopping occurs, the model will have three additional fields: bst.best_score, bst.best_iteration
and bst.best_ntree_limit. Note that xgboost.train() will return a model from the last iteration, not the
best one.

This works with both metrics to minimize (RMSE, log loss, etc.) and to maximize (MAP, NDCG, AUC). Note that if
you specify more than one evaluation metric the last one in param['eval_metric'] is used for early stopping.

Prediction

A model that has been trained or loaded can perform predictions on data sets.

7 entities, each contains 10 features
data = np.random.rand(7, 10)
dtest = xgb.DMatrix(data)
ypred = bst.predict(dtest)

If early stopping is enabled during training, you can get predictions from the best iteration with bst.
best_ntree_limit:

ypred = bst.predict(dtest, ntree_limit=bst.best_ntree_limit)

Plotting

You can use plotting module to plot importance and output tree.

To plot importance, use xgboost.plot_importance(). This function requires matplotlib to be installed.

xgb.plot_importance(bst)

To plot the output tree via matplotlib, use xgboost.plot_tree(), specifying the ordinal number of the target
tree. This function requires graphviz and matplotlib.

xgb.plot_tree(bst, num_trees=2)

When you use IPython, you can use the xgboost.to_graphviz() function, which converts the target tree to
a graphviz instance. The graphviz instance is automatically rendered in IPython.

xgb.to_graphviz(bst, num_trees=2)

76 Chapter 1. Contents

xgboost, Release 1.2.1

Python API Reference

This page gives the Python API reference of xgboost, please also refer to Python Package Introduction for more
information about python package.

• Core Data Structure

• Learning API

• Scikit-Learn API

• Plotting API

• Callback API

• Dask API

Core Data Structure

Core XGBoost Library.

class xgboost.DMatrix(data, label=None, weight=None, base_margin=None, missing=None,
silent=False, feature_names=None, feature_types=None, nthread=None)

Bases: object

Data Matrix used in XGBoost.

DMatrix is a internal data structure that used by XGBoost which is optimized for both memory efficiency and
training speed. You can construct DMatrix from multiple different sources of data.

Parameters

• data (os.PathLike/string/numpy.array/scipy.sparse/pd.
DataFrame/) – dt.Frame/cudf.DataFrame/cupy.array/dlpack Data source of DMatrix.
When data is string or os.PathLike type, it represents the path libsvm format txt file, csv
file (by specifying uri parameter ‘path_to_csv?format=csv’), or binary file that xgboost can
read from.

• label (list, numpy 1-D array or cudf.DataFrame, optional) – La-
bel of the training data.

• missing (float, optional) – Value in the input data which needs to be present as a
missing value. If None, defaults to np.nan.

• weight (list, numpy 1-D array or cudf.DataFrame , optional) –
Weight for each instance.

Note: For ranking task, weights are per-group.

In ranking task, one weight is assigned to each group (not each data point). This is because
we only care about the relative ordering of data points within each group, so it doesn’t make
sense to assign weights to individual data points.

• silent (boolean, optional) – Whether print messages during construction

• feature_names (list, optional) – Set names for features.

• feature_types (list, optional) – Set types for features.

1.7. XGBoost Python Package 77

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

xgboost, Release 1.2.1

• nthread (integer, optional) – Number of threads to use for loading data when
parallelization is applicable. If -1, uses maximum threads available on the system.

property feature_names
Get feature names (column labels).

Returns feature_names

Return type list or None

property feature_types
Get feature types (column types).

Returns feature_types

Return type list or None

get_base_margin()
Get the base margin of the DMatrix.

Returns base_margin

Return type float

get_float_info(field)
Get float property from the DMatrix.

Parameters field (str) – The field name of the information

Returns info – a numpy array of float information of the data

Return type array

get_label()
Get the label of the DMatrix.

Returns label

Return type array

get_uint_info(field)
Get unsigned integer property from the DMatrix.

Parameters field (str) – The field name of the information

Returns info – a numpy array of unsigned integer information of the data

Return type array

get_weight()
Get the weight of the DMatrix.

Returns weight

Return type array

num_col()
Get the number of columns (features) in the DMatrix.

Returns number of columns

Return type int

num_row()
Get the number of rows in the DMatrix.

Returns number of rows

78 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

Return type int

save_binary(fname, silent=True)
Save DMatrix to an XGBoost buffer. Saved binary can be later loaded by providing the path to xgboost.
DMatrix() as input.

Parameters

• fname (string or os.PathLike) – Name of the output buffer file.

• silent (bool (optional; default: True)) – If set, the output is sup-
pressed.

set_base_margin(margin)
Set base margin of booster to start from.

This can be used to specify a prediction value of existing model to be base_margin However, remember
margin is needed, instead of transformed prediction e.g. for logistic regression: need to put in value before
logistic transformation see also example/demo.py

Parameters margin (array like) – Prediction margin of each datapoint

set_float_info(field, data)
Set float type property into the DMatrix.

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

set_float_info_npy2d(field, data)

Set float type property into the DMatrix for numpy 2d array input

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

set_group(group)
Set group size of DMatrix (used for ranking).

Parameters group (array like) – Group size of each group

set_info(label=None, weight=None, base_margin=None, group=None, label_lower_bound=None,
label_upper_bound=None, feature_names=None, feature_types=None)

Set meta info for DMatrix.

set_label(label)
Set label of dmatrix

Parameters label (array like) – The label information to be set into DMatrix

set_uint_info(field, data)
Set uint type property into the DMatrix.

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

set_weight(weight)
Set weight of each instance.

1.7. XGBoost Python Package 79

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

Parameters weight (array like) – Weight for each data point

Note: For ranking task, weights are per-group.

In ranking task, one weight is assigned to each group (not each data point). This is because
we only care about the relative ordering of data points within each group, so it doesn’t make
sense to assign weights to individual data points.

slice(rindex, allow_groups=False)
Slice the DMatrix and return a new DMatrix that only contains rindex.

Parameters

• rindex (list) – List of indices to be selected.

• allow_groups (boolean) – Allow slicing of a matrix with a groups attribute

Returns res – A new DMatrix containing only selected indices.

Return type DMatrix

class xgboost.DeviceQuantileDMatrix(data, label=None, weight=None, base_margin=None,
missing=None, silent=False, feature_names=None, fea-
ture_types=None, nthread=None, max_bin=256)

Bases: xgboost.core.DMatrix

Device memory Data Matrix used in XGBoost for training with tree_method=’gpu_hist’. Do not use this for
test/validation tasks as some information may be lost in quantisation. This DMatrix is primarily designed to
save memory in training from device memory inputs by avoiding intermediate storage. Set max_bin to control
the number of bins during quantisation.

You can construct DeviceQuantileDMatrix from cupy/cudf/dlpack.

New in version 1.1.0.

Parameters

• data (os.PathLike/string/numpy.array/scipy.sparse/pd.
DataFrame/) – dt.Frame/cudf.DataFrame/cupy.array/dlpack Data source of DMatrix.
When data is string or os.PathLike type, it represents the path libsvm format txt file, csv
file (by specifying uri parameter ‘path_to_csv?format=csv’), or binary file that xgboost can
read from.

• label (list, numpy 1-D array or cudf.DataFrame, optional) – La-
bel of the training data.

• missing (float, optional) – Value in the input data which needs to be present as a
missing value. If None, defaults to np.nan.

• weight (list, numpy 1-D array or cudf.DataFrame , optional) –
Weight for each instance.

Note: For ranking task, weights are per-group.

In ranking task, one weight is assigned to each group (not each data point). This is because
we only care about the relative ordering of data points within each group, so it doesn’t make
sense to assign weights to individual data points.

• silent (boolean, optional) – Whether print messages during construction

• feature_names (list, optional) – Set names for features.

80 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

xgboost, Release 1.2.1

• feature_types (list, optional) – Set types for features.

• nthread (integer, optional) – Number of threads to use for loading data when
parallelization is applicable. If -1, uses maximum threads available on the system.

class xgboost.Booster(params=None, cache=(), model_file=None)
Bases: object

A Booster of XGBoost.

Booster is the model of xgboost, that contains low level routines for training, prediction and evaluation.

Parameters

• params (dict) – Parameters for boosters.

• cache (list) – List of cache items.

• model_file (string or os.PathLike) – Path to the model file.

attr(key)
Get attribute string from the Booster.

Parameters key (str) – The key to get attribute from.

Returns value – The attribute value of the key, returns None if attribute do not exist.

Return type str

attributes()
Get attributes stored in the Booster as a dictionary.

Returns result – Returns an empty dict if there’s no attributes.

Return type dictionary of attribute_name: attribute_value pairs of strings.

boost(dtrain, grad, hess)
Boost the booster for one iteration, with customized gradient statistics. Like xgboost.core.
Booster.update(), this function should not be called directly by users.

Parameters

• dtrain (DMatrix) – The training DMatrix.

• grad (list) – The first order of gradient.

• hess (list) – The second order of gradient.

copy()
Copy the booster object.

Returns booster – a copied booster model

Return type Booster

dump_model(fout, fmap='', with_stats=False, dump_format='text')
Dump model into a text or JSON file. Unlike save_model, the output format is primarily used for visual-
ization or interpretation, hence it’s more human readable but cannot be loaded back to XGBoost.

Parameters

• fout (string or os.PathLike) – Output file name.

• fmap (string or os.PathLike, optional) – Name of the file containing fea-
ture map names.

• with_stats (bool, optional) – Controls whether the split statistics are output.

1.7. XGBoost Python Package 81

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/functions.html#bool

xgboost, Release 1.2.1

• dump_format (string, optional) – Format of model dump file. Can be ‘text’ or
‘json’.

eval(data, name='eval', iteration=0)
Evaluate the model on mat.

Parameters

• data (DMatrix) – The dmatrix storing the input.

• name (str, optional) – The name of the dataset.

• iteration (int, optional) – The current iteration number.

Returns result – Evaluation result string.

Return type str

eval_set(evals, iteration=0, feval=None)
Evaluate a set of data.

Parameters

• evals (list of tuples (DMatrix, string)) – List of items to be evaluated.

• iteration (int) – Current iteration.

• feval (function) – Custom evaluation function.

Returns result – Evaluation result string.

Return type str

get_dump(fmap='', with_stats=False, dump_format='text')
Returns the model dump as a list of strings. Unlike save_model, the output format is primarily used for
visualization or interpretation, hence it’s more human readable but cannot be loaded back to XGBoost.

Parameters

• fmap (string or os.PathLike, optional) – Name of the file containing fea-
ture map names.

• with_stats (bool, optional) – Controls whether the split statistics are output.

• dump_format (string, optional) – Format of model dump. Can be ‘text’, ‘json’
or ‘dot’.

get_fscore(fmap='')
Get feature importance of each feature.

Note: Feature importance is defined only for tree boosters

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Note: Zero-importance features will not be included

Keep in mind that this function does not include zero-importance feature, i.e. those features that have not
been used in any split conditions.

Parameters fmap (str or os.PathLike (optional)) – The name of feature map file

82 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/os.html#os.PathLike

xgboost, Release 1.2.1

get_score(fmap='', importance_type='weight')
Get feature importance of each feature. Importance type can be defined as:

• ‘weight’: the number of times a feature is used to split the data across all trees.

• ‘gain’: the average gain across all splits the feature is used in.

• ‘cover’: the average coverage across all splits the feature is used in.

• ‘total_gain’: the total gain across all splits the feature is used in.

• ‘total_cover’: the total coverage across all splits the feature is used in.

Note: Feature importance is defined only for tree boosters

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Parameters

• fmap (str or os.PathLike (optional)) – The name of feature map file.

• importance_type (str, default 'weight') – One of the importance types
defined above.

get_split_value_histogram(feature, fmap='', bins=None, as_pandas=True)
Get split value histogram of a feature

Parameters

• feature (str) – The name of the feature.

• fmap (str or os.PathLike (optional)) – The name of feature map file.

• bin (int, default None) – The maximum number of bins. Number of bins equals
number of unique split values n_unique, if bins == None or bins > n_unique.

• as_pandas (bool, default True) – Return pd.DataFrame when pandas is in-
stalled. If False or pandas is not installed, return numpy ndarray.

Returns

• a histogram of used splitting values for the specified feature

• either as numpy array or pandas DataFrame.

inplace_predict(data, iteration_range=(0, 0), predict_type='value', missing=nan)
Run prediction in-place, Unlike predict method, inplace prediction does not cache the prediction result.

Calling only inplace_predict in multiple threads is safe and lock free. But the safety does not hold
when used in conjunction with other methods. E.g. you can’t train the booster in one thread and perform
prediction in the other.

booster.set_param({'predictor': 'gpu_predictor'})
booster.inplace_predict(cupy_array)

booster.set_param({'predictor': 'cpu_predictor})
booster.inplace_predict(numpy_array)

New in version 1.1.0.

Parameters

1.7. XGBoost Python Package 83

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

xgboost, Release 1.2.1

• data (numpy.ndarray/scipy.sparse.csr_matrix/cupy.ndarray/) –
cudf.DataFrame/pd.DataFrame The input data, must not be a view for numpy array.
Set predictor to gpu_predictor for running prediction on CuPy array or CuDF
DataFrame.

• iteration_range (tuple) – Specifies which layer of trees are used in prediction. For
example, if a random forest is trained with 100 rounds. Specifying iteration_range=(10,
20), then only the forests built during [10, 20) (open set) rounds are used in this prediction.

• predict_type (str) –

– value Output model prediction values.

– margin Output the raw untransformed margin value.

• missing (float) – Value in the input data which needs to be present as a missing value.

Returns prediction – The prediction result. When input data is on GPU, prediction result is
stored in a cupy array.

Return type numpy.ndarray/cupy.ndarray

load_config(config)
Load configuration returned by save_config.

New in version 1.0.0.

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from an XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded. See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

for more info.

Parameters fname (string, os.PathLike, or a memory buffer) – Input file
name or memory buffer(see also save_raw)

load_rabit_checkpoint()
Initialize the model by load from rabit checkpoint.

Returns version – The version number of the model.

Return type integer

predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False, ap-
prox_contribs=False, pred_interactions=False, validate_features=True, training=False)

Predict with data.

Note:

This function is not thread safe except for gbtree booster.

For gbtree booster, the thread safety is guaranteed by locks. For lock free prediction use
inplace_predict instead. Also, the safety does not hold when used in conjunction with other meth-
ods.

When using booster other than gbtree, predict can only be called from one thread. If you want to
run prediction using multiple thread, call bst.copy() to make copies of model object and then call
predict().

84 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#float
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
https://docs.python.org/3.6/library/os.html#os.PathLike

xgboost, Release 1.2.1

Parameters

• data (DMatrix) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

• pred_leaf (bool) – When this option is on, the output will be a matrix of (nsample,
ntrees) with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1 in both tree 1
and tree 0.

• pred_contribs (bool) – When this is True the output will be a matrix of size (nsam-
ple, nfeats + 1) with each record indicating the feature contributions (SHAP values) for
that prediction. The sum of all feature contributions is equal to the raw untransformed
margin value of the prediction. Note the final column is the bias term.

• approx_contribs (bool) – Approximate the contributions of each feature

• pred_interactions (bool) – When this is True the output will be a matrix of size
(nsample, nfeats + 1, nfeats + 1) indicating the SHAP interaction values for each pair of
features. The sum of each row (or column) of the interaction values equals the corre-
sponding SHAP value (from pred_contribs), and the sum of the entire matrix equals the
raw untransformed margin value of the prediction. Note the last row and column corre-
spond to the bias term.

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

• training (bool) – Whether the prediction value is used for training. This can effect
dart booster, which performs dropouts during training iterations.

New in version 1.0.0.

:param .. note:: Using predict() with DART booster: If the booster object is DART type, predict() will not perform
dropouts, i.e. all the trees will be evaluated. If you want to obtain result with dropouts, provide
training=True.

Returns prediction

Return type numpy array

save_config()
Output internal parameter configuration of Booster as a JSON string.

New in version 1.0.0.

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved. See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

for more info.

Parameters fname (string or os.PathLike) – Output file name

1.7. XGBoost Python Package 85

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
https://docs.python.org/3.6/library/os.html#os.PathLike

xgboost, Release 1.2.1

save_rabit_checkpoint()
Save the current booster to rabit checkpoint.

save_raw()
Save the model to a in memory buffer representation instead of file.

Returns

Return type a in memory buffer representation of the model

set_attr(**kwargs)
Set the attribute of the Booster.

Parameters **kwargs – The attributes to set. Setting a value to None deletes an attribute.

set_param(params, value=None)
Set parameters into the Booster.

Parameters

• params (dict/list/str) – list of key,value pairs, dict of key to value or simply str
key

• value (optional) – value of the specified parameter, when params is str key

trees_to_dataframe(fmap='')
Parse a boosted tree model text dump into a pandas DataFrame structure.

This feature is only defined when the decision tree model is chosen as base learner (booster in {gbtree,
dart}). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Parameters fmap (str or os.PathLike (optional)) – The name of feature map
file.

update(dtrain, iteration, fobj=None)
Update for one iteration, with objective function calculated internally. This function should not be called
directly by users.

Parameters

• dtrain (DMatrix) – Training data.

• iteration (int) – Current iteration number.

• fobj (function) – Customized objective function.

Learning API

Training Library containing training routines.

xgboost.train(params, dtrain, num_boost_round=10, evals=(), obj=None, feval=None, max-
imize=False, early_stopping_rounds=None, evals_result=None, verbose_eval=True,
xgb_model=None, callbacks=None)

Train a booster with given parameters.

Parameters

• params (dict) – Booster params.

• dtrain (DMatrix) – Data to be trained.

• num_boost_round (int) – Number of boosting iterations.

86 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

• evals (list of pairs (DMatrix, string)) – List of validation sets for which
metrics will evaluated during training. Validation metrics will help us track the performance
of the model.

• obj (function) – Customized objective function.

• feval (function) – Customized evaluation function.

• maximize (bool) – Whether to maximize feval.

• early_stopping_rounds (int) – Activates early stopping. Validation metric needs
to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in evals. The method returns the model from the last itera-
tion (not the best one). If there’s more than one item in evals, the last entry will be used
for early stopping. If there’s more than one metric in the eval_metric parameter given
in params, the last metric will be used for early stopping. If early stopping occurs, the
model will have three additional fields: bst.best_score, bst.best_iteration
and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct
value if num_parallel_tree and/or num_class appears in the parameters)

• evals_result (dict) – This dictionary stores the evaluation results of all the items in
watchlist.

Example: with a watchlist containing [(dtest,'eval'), (dtrain,'train')]
and a parameter containing ('eval_metric': 'logloss'), the evals_result re-
turns

{'train': {'logloss': ['0.48253', '0.35953']},
'eval': {'logloss': ['0.480385', '0.357756']}}

• verbose_eval (bool or int) – Requires at least one item in evals. If verbose_eval
is True then the evaluation metric on the validation set is printed at each boosting stage. If
verbose_eval is an integer then the evaluation metric on the validation set is printed at every
given verbose_eval boosting stage. The last boosting stage / the boosting stage found by
using early_stopping_rounds is also printed. Example: with verbose_eval=4 and at
least one item in evals, an evaluation metric is printed every 4 boosting stages, instead of
every boosting stage.

• xgb_model (file name of stored xgb model or 'Booster'
instance) – Xgb model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

Returns Booster

Return type a trained booster model

xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None, metrics=(),
obj=None, feval=None, maximize=False, early_stopping_rounds=None, fpreproc=None,
as_pandas=True, verbose_eval=None, show_stdv=True, seed=0, callbacks=None, shuf-
fle=True)

Cross-validation with given parameters.

Parameters

• params (dict) – Booster params.

1.7. XGBoost Python Package 87

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#dict

xgboost, Release 1.2.1

• dtrain (DMatrix) – Data to be trained.

• num_boost_round (int) – Number of boosting iterations.

• nfold (int) – Number of folds in CV.

• stratified (bool) – Perform stratified sampling.

• folds (a KFold or StratifiedKFold instance or list of fold
indices) – Sklearn KFolds or StratifiedKFolds object. Alternatively may explicitly pass
sample indices for each fold. For n folds, folds should be a length n list of tuples. Each
tuple is (in,out) where in is a list of indices to be used as the training samples for the
n th fold and out is a list of indices to be used as the testing samples for the n th fold.

• metrics (string or list of strings) – Evaluation metrics to be watched in
CV.

• obj (function) – Custom objective function.

• feval (function) – Custom evaluation function.

• maximize (bool) – Whether to maximize feval.

• early_stopping_rounds (int) – Activates early stopping. Cross-Validation metric
(average of validation metric computed over CV folds) needs to improve at least once in
every early_stopping_rounds round(s) to continue training. The last entry in the evaluation
history will represent the best iteration. If there’s more than one metric in the eval_metric
parameter given in params, the last metric will be used for early stopping.

• fpreproc (function) – Preprocessing function that takes (dtrain, dtest, param) and
returns transformed versions of those.

• as_pandas (bool, default True) – Return pd.DataFrame when pandas is in-
stalled. If False or pandas is not installed, return np.ndarray

• verbose_eval (bool, int, or None, default None) – Whether to display
the progress. If None, progress will be displayed when np.ndarray is returned. If True,
progress will be displayed at boosting stage. If an integer is given, progress will be displayed
at every given verbose_eval boosting stage.

• show_stdv (bool, default True) – Whether to display the standard deviation in
progress. Results are not affected, and always contains std.

• seed (int) – Seed used to generate the folds (passed to numpy.random.seed).

• callbacks (list of callback functions) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

• shuffle (bool) – Shuffle data before creating folds.

Returns evaluation history

Return type list(string)

88 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/constants.html#None
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#list

xgboost, Release 1.2.1

Scikit-Learn API

Scikit-Learn Wrapper interface for XGBoost.

class xgboost.XGBRegressor(objective='reg:squarederror', **kwargs)
Bases: xgboost.sklearn.XGBModel, object

Implementation of the scikit-learn API for XGBoost regression.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of
boosting rounds.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

1.7. XGBoost Python Package 89

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float

xgboost, Release 1.2.1

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case,
it should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples] The target values

y_pred: array_like of shape [n_samples] The predicted values

grad: array_like of shape [n_samples] The value of the gradient for each sample point.

hess: array_like of shape [n_samples] The value of the second derivative for each sample
point

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

property coef_
Coefficients property

Note: Coefficients are defined only for linear learners

90 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns coef_

Return type array of shape [n_features] or [n_classes, n_features]

evals_result()
Return the evaluation results.

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit function, the evals_result will contain the
eval_metrics passed to the fit function.

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBModel(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

property feature_importances_
Feature importances property

Note: Feature importance is defined only for tree boosters

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
callbacks=None)
Fit gradient boosting model

Parameters

• X (array_like) – Feature matrix

1.7. XGBoost Python Package 91

xgboost, Release 1.2.1

• y (array_like) – Labels

• sample_weight (array_like) – instance weights

• base_margin (array_like) – global bias for each instance.

• eval_set (list, optional) – A list of (X, y) tuple pairs to use as validation sets,
for which metrics will be computed. Validation metrics will help us track the performance
of the model.

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of instance weights on the i-th validation set.

• eval_metric (str, list of str, or callable, optional) – If a str,
should be a built-in evaluation metric to use. See doc/parameter.rst. If a list of str, should
be the list of multiple built-in evaluation metrics to use. If callable, a custom evaluation
metric. The call signature is func(y_predicted, y_true) where y_true will be
a DMatrix object such that you may need to call the get_label method. It must return
a str, value pair where the str is a name for the evaluation and value is the value of the
evaluation function. The callable custom objective is always minimized.

• early_stopping_rounds (int) – Activates early stopping. Validation metric needs
to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in eval_set. The method returns the model from the last iteration
(not the best one). If there’s more than one item in eval_set, the last entry will be used for
early stopping. If there’s more than one metric in eval_metric, the last metric will be used
for early stopping. If early stopping occurs, the model will have three additional fields:
clf.best_score, clf.best_iteration and clf.best_ntree_limit.

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored XGBoost model or ‘Booster’ instance XGBoost
model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
Callback API. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

get_booster()
Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns booster

Return type a xgboost booster of underlying model

get_num_boosting_rounds()
Gets the number of xgboost boosting rounds.

get_params(deep=True)
Get parameters.

get_xgb_params()
Get xgboost specific parameters.

property intercept_
Intercept (bias) property

92 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns intercept_

Return type array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file.

The model is loaded from an XGBoost internal format which is universal among the various XGBoost
interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded.

Parameters fname (string) – Input file name.

predict(data, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (numpy.array/scipy.sparse) – Data to predict with

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction

Return type numpy array

save_model(fname: str)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature names) will not be saved.

Note: See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

Parameters fname (string) – Output file name

1.7. XGBoost Python Package 93

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

xgboost, Release 1.2.1

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Returns

Return type self

class xgboost.XGBClassifier(objective='binary:logistic', **kwargs)
Bases: xgboost.sklearn.XGBModel, object

Implementation of the scikit-learn API for XGBoost classification.

Parameters

• n_estimators (int) – Number of boosting rounds.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

94 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#object
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case,
it should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples] The target values

y_pred: array_like of shape [n_samples] The predicted values

grad: array_like of shape [n_samples] The value of the gradient for each sample point.

hess: array_like of shape [n_samples] The value of the second derivative for each sample
point

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

property coef_
Coefficients property

1.7. XGBoost Python Package 95

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns coef_

Return type array of shape [n_features] or [n_classes, n_features]

evals_result()
Return the evaluation results.

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit function, the evals_result will contain the
eval_metrics passed to the fit function.

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBClassifier(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

property feature_importances_
Feature importances property

Note: Feature importance is defined only for tree boosters

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
callbacks=None)
Fit gradient boosting classifier

96 Chapter 1. Contents

xgboost, Release 1.2.1

Parameters

• X (array_like) – Feature matrix

• y (array_like) – Labels

• sample_weight (array_like) – instance weights

• base_margin (array_like) – global bias for each instance.

• eval_set (list, optional) – A list of (X, y) tuple pairs to use as validation sets,
for which metrics will be computed. Validation metrics will help us track the performance
of the model.

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of instance weights on the i-th validation set.

• eval_metric (str, list of str, or callable, optional) – If a str,
should be a built-in evaluation metric to use. See doc/parameter.rst. If a list of str, should
be the list of multiple built-in evaluation metrics to use. If callable, a custom evaluation
metric. The call signature is func(y_predicted, y_true) where y_true will be
a DMatrix object such that you may need to call the get_label method. It must return
a str, value pair where the str is a name for the evaluation and value is the value of the
evaluation function. The callable custom objective is always minimized.

• early_stopping_rounds (int) – Activates early stopping. Validation metric needs
to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in eval_set. The method returns the model from the last iteration
(not the best one). If there’s more than one item in eval_set, the last entry will be used for
early stopping. If there’s more than one metric in eval_metric, the last metric will be used
for early stopping. If early stopping occurs, the model will have three additional fields:
clf.best_score, clf.best_iteration and clf.best_ntree_limit.

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored XGBoost model or ‘Booster’ instance XGBoost
model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
Callback API. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

get_booster()
Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns booster

Return type a xgboost booster of underlying model

get_num_boosting_rounds()
Gets the number of xgboost boosting rounds.

get_params(deep=True)
Get parameters.

get_xgb_params()
Get xgboost specific parameters.

1.7. XGBoost Python Package 97

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

property intercept_
Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns intercept_

Return type array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file.

The model is loaded from an XGBoost internal format which is universal among the various XGBoost
interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded.

Parameters fname (string) – Input file name.

predict(data, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (array_like) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction

Return type numpy array

predict_proba(data, ntree_limit=None, validate_features=False, base_margin=None)
Predict the probability of each data example being of a given class.

Note: This function is not thread safe

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict

98 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

xgboost, Release 1.2.1

Parameters

• data (DMatrix) – The dmatrix storing the input.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction – a numpy array with the probability of each data example being of a given
class.

Return type numpy array

save_model(fname: str)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature names) will not be saved.

Note: See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

Parameters fname (string) – Output file name

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Returns

Return type self

class xgboost.XGBRanker(objective='rank:pairwise', **kwargs)
Bases: xgboost.sklearn.XGBModel

Implementation of the Scikit-Learn API for XGBoost Ranking.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of
boosting rounds.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

1.7. XGBoost Python Package 99

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

100 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

xgboost, Release 1.2.1

Note: A custom objective function is currently not supported by XGBRanker. Likewise, a
custom metric function is not supported either.

Note: Query group information is required for ranking tasks.

Before fitting the model, your data need to be sorted by query group. When fitting the
model, you need to provide an additional array that contains the size of each query group.

For example, if your original data look like:

qid label features
1 0 x_1
1 1 x_2
1 0 x_3
2 0 x_4
2 1 x_5
2 1 x_6
2 1 x_7

then your group array should be [3, 4].

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

property coef_
Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns coef_

Return type array of shape [n_features] or [n_classes, n_features]

evals_result()
Return the evaluation results.

1.7. XGBoost Python Package 101

https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit function, the evals_result will contain the
eval_metrics passed to the fit function.

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBModel(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

property feature_importances_
Feature importances property

Note: Feature importance is defined only for tree boosters

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, group, sample_weight=None, base_margin=None, eval_set=None, sam-
ple_weight_eval_set=None, eval_group=None, eval_metric=None, early_stopping_rounds=None,
verbose=False, xgb_model=None, callbacks=None)
Fit gradient boosting ranker

Parameters

• X (array_like) – Feature matrix

• y (array_like) – Labels

• group (array_like) – Size of each query group of training data. Should have as many
elements as the query groups in the training data

• sample_weight (array_like) – Query group weights

Note: Weights are per-group for ranking tasks

102 Chapter 1. Contents

xgboost, Release 1.2.1

In ranking task, one weight is assigned to each query group (not each data point). This
is because we only care about the relative ordering of data points within each group, so it
doesn’t make sense to assign weights to individual data points.

• base_margin (array_like) – Global bias for each instance.

• eval_set (list, optional) – A list of (X, y) tuple pairs to use as validation sets,
for which metrics will be computed. Validation metrics will help us track the performance
of the model.

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of group weights on the i-th validation set.

Note: Weights are per-group for ranking tasks

In ranking task, one weight is assigned to each query group (not each data point). This
is because we only care about the relative ordering of data points within each group, so it
doesn’t make sense to assign weights to individual data points.

• eval_group (list of arrays, optional) – A list in which
eval_group[i] is the list containing the sizes of all query groups in the i-th
pair in eval_set.

• eval_metric (str, list of str, optional) – If a str, should be a built-in
evaluation metric to use. See doc/parameter.rst. If a list of str, should be the list of multiple
built-in evaluation metrics to use. The custom evaluation metric is not yet supported for
the ranker.

• early_stopping_rounds (int) – Activates early stopping. Validation metric needs
to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in eval_set. The method returns the model from the last iteration
(not the best one). If there’s more than one item in eval_set, the last entry will be used for
early stopping. If there’s more than one metric in eval_metric, the last metric will be used
for early stopping. If early stopping occurs, the model will have three additional fields:
clf.best_score, clf.best_iteration and clf.best_ntree_limit.

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored XGBoost model or ‘Booster’ instance XGBoost
model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
Callback API. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

get_booster()
Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns booster

Return type a xgboost booster of underlying model

get_num_boosting_rounds()
Gets the number of xgboost boosting rounds.

1.7. XGBoost Python Package 103

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

get_params(deep=True)
Get parameters.

get_xgb_params()
Get xgboost specific parameters.

property intercept_
Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns intercept_

Return type array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file.

The model is loaded from an XGBoost internal format which is universal among the various XGBoost
interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded.

Parameters fname (string) – Input file name.

predict(data, output_margin=False, ntree_limit=0, validate_features=True, base_margin=None)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (numpy.array/scipy.sparse) – Data to predict with

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction

Return type numpy array

save_model(fname: str)
Save the model to a file.

104 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature names) will not be saved.

Note: See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

Parameters fname (string) – Output file name

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Returns

Return type self

class xgboost.XGBRFRegressor(learning_rate=1, subsample=0.8, colsample_bynode=0.8,
reg_lambda=1e-05, **kwargs)

Bases: xgboost.sklearn.XGBRegressor

scikit-learn API for XGBoost random forest regression.

Parameters

• n_estimators (int) – Number of trees in random forest to fit.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

1.7. XGBoost Python Package 105

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float

xgboost, Release 1.2.1

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case,
it should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples] The target values

y_pred: array_like of shape [n_samples] The predicted values

grad: array_like of shape [n_samples] The value of the gradient for each sample point.

hess: array_like of shape [n_samples] The value of the second derivative for each sample
point

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

106 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

xgboost, Release 1.2.1

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

property coef_
Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns coef_

Return type array of shape [n_features] or [n_classes, n_features]

evals_result()
Return the evaluation results.

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit function, the evals_result will contain the
eval_metrics passed to the fit function.

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBModel(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

property feature_importances_
Feature importances property

Note: Feature importance is defined only for tree boosters

1.7. XGBoost Python Package 107

https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
callbacks=None)
Fit gradient boosting model

Parameters

• X (array_like) – Feature matrix

• y (array_like) – Labels

• sample_weight (array_like) – instance weights

• base_margin (array_like) – global bias for each instance.

• eval_set (list, optional) – A list of (X, y) tuple pairs to use as validation sets,
for which metrics will be computed. Validation metrics will help us track the performance
of the model.

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of instance weights on the i-th validation set.

• eval_metric (str, list of str, or callable, optional) – If a str,
should be a built-in evaluation metric to use. See doc/parameter.rst. If a list of str, should
be the list of multiple built-in evaluation metrics to use. If callable, a custom evaluation
metric. The call signature is func(y_predicted, y_true) where y_true will be
a DMatrix object such that you may need to call the get_label method. It must return
a str, value pair where the str is a name for the evaluation and value is the value of the
evaluation function. The callable custom objective is always minimized.

• early_stopping_rounds (int) – Activates early stopping. Validation metric needs
to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in eval_set. The method returns the model from the last iteration
(not the best one). If there’s more than one item in eval_set, the last entry will be used for
early stopping. If there’s more than one metric in eval_metric, the last metric will be used
for early stopping. If early stopping occurs, the model will have three additional fields:
clf.best_score, clf.best_iteration and clf.best_ntree_limit.

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored XGBoost model or ‘Booster’ instance XGBoost
model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
Callback API. Example:

[xgb.callback.reset_learning_rate(custom_rates)]

get_booster()
Get the underlying xgboost Booster of this model.

108 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

This will raise an exception when fit was not called

Returns booster

Return type a xgboost booster of underlying model

get_num_boosting_rounds()
Gets the number of xgboost boosting rounds.

get_params(deep=True)
Get parameters.

get_xgb_params()
Get xgboost specific parameters.

property intercept_
Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns intercept_

Return type array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file.

The model is loaded from an XGBoost internal format which is universal among the various XGBoost
interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded.

Parameters fname (string) – Input file name.

predict(data, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (numpy.array/scipy.sparse) – Data to predict with

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

1.7. XGBoost Python Package 109

https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool

xgboost, Release 1.2.1

Returns prediction

Return type numpy array

save_model(fname: str)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature names) will not be saved.

Note: See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

Parameters fname (string) – Output file name

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Returns

Return type self

class xgboost.XGBRFClassifier(learning_rate=1, subsample=0.8, colsample_bynode=0.8,
reg_lambda=1e-05, **kwargs)

Bases: xgboost.sklearn.XGBClassifier

scikit-learn API for XGBoost random forest classification.

Parameters

• n_estimators (int) – Number of trees in random forest to fit.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

110 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#str
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float

xgboost, Release 1.2.1

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case,
it should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples] The target values

y_pred: array_like of shape [n_samples] The predicted values

grad: array_like of shape [n_samples] The value of the gradient for each sample point.

hess: array_like of shape [n_samples] The value of the second derivative for each sample
point

1.7. XGBoost Python Package 111

https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

xgboost, Release 1.2.1

apply(X, ntree_limit=0)
Return the predicted leaf every tree for each sample.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to 0 (use all
trees).

Returns X_leaves – For each datapoint x in X and for each tree, return the index of the leaf
x ends up in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly
with gaps in the numbering.

Return type array_like, shape=[n_samples, n_trees]

property coef_
Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns coef_

Return type array of shape [n_features] or [n_classes, n_features]

evals_result()
Return the evaluation results.

If eval_set is passed to the fit function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit function, the evals_result will contain the
eval_metrics passed to the fit function.

Returns evals_result

Return type dictionary

Example

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBClassifier(**param_dist)

clf.fit(X_train, y_train,
eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

evals_result = clf.evals_result()

The variable evals_result will contain

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

112 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

property feature_importances_
Feature importances property

Note: Feature importance is defined only for tree boosters

Feature importance is only defined when the decision tree model is chosen as base learner
(booster=gbtree). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Returns feature_importances_

Return type array of shape [n_features]

fit(X, y, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
callbacks=None)
Fit gradient boosting classifier

Parameters

• X (array_like) – Feature matrix

• y (array_like) – Labels

• sample_weight (array_like) – instance weights

• base_margin (array_like) – global bias for each instance.

• eval_set (list, optional) – A list of (X, y) tuple pairs to use as validation sets,
for which metrics will be computed. Validation metrics will help us track the performance
of the model.

• sample_weight_eval_set (list, optional) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of instance weights on the i-th validation set.

• eval_metric (str, list of str, or callable, optional) – If a str,
should be a built-in evaluation metric to use. See doc/parameter.rst. If a list of str, should
be the list of multiple built-in evaluation metrics to use. If callable, a custom evaluation
metric. The call signature is func(y_predicted, y_true) where y_true will be
a DMatrix object such that you may need to call the get_label method. It must return
a str, value pair where the str is a name for the evaluation and value is the value of the
evaluation function. The callable custom objective is always minimized.

• early_stopping_rounds (int) – Activates early stopping. Validation metric needs
to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in eval_set. The method returns the model from the last iteration
(not the best one). If there’s more than one item in eval_set, the last entry will be used for
early stopping. If there’s more than one metric in eval_metric, the last metric will be used
for early stopping. If early stopping occurs, the model will have three additional fields:
clf.best_score, clf.best_iteration and clf.best_ntree_limit.

• verbose (bool) – If verbose and an evaluation set is used, writes the evaluation metric
measured on the validation set to stderr.

• xgb_model (str) – file name of stored XGBoost model or ‘Booster’ instance XGBoost
model to be loaded before training (allows training continuation).

• callbacks (list of callback functions) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using
Callback API. Example:

1.7. XGBoost Python Package 113

https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str

xgboost, Release 1.2.1

[xgb.callback.reset_learning_rate(custom_rates)]

get_booster()
Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns booster

Return type a xgboost booster of underlying model

get_num_boosting_rounds()
Gets the number of xgboost boosting rounds.

get_params(deep=True)
Get parameters.

get_xgb_params()
Get xgboost specific parameters.

property intercept_
Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns intercept_

Return type array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file.

The model is loaded from an XGBoost internal format which is universal among the various XGBoost
interfaces. Auxiliary attributes of the Python Booster object (such as feature names) will not be loaded.

Parameters fname (string) – Input file name.

predict(data, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None)
Predict with data.

Note: This function is not thread safe.

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict().

preds = bst.predict(dtest, ntree_limit=num_round)

Parameters

• data (array_like) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

114 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#bool

xgboost, Release 1.2.1

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction

Return type numpy array

predict_proba(data, ntree_limit=None, validate_features=False, base_margin=None)
Predict the probability of each data example being of a given class.

Note: This function is not thread safe

For each booster object, predict can only be called from one thread. If you want to run prediction using
multiple thread, call xgb.copy() to make copies of model object and then call predict

Parameters

• data (DMatrix) – The dmatrix storing the input.

• ntree_limit (int) – Limit number of trees in the prediction; defaults to
best_ntree_limit if defined (i.e. it has been trained with early stopping), otherwise 0 (use
all trees).

• validate_features (bool) – When this is True, validate that the Booster’s and
data’s feature_names are identical. Otherwise, it is assumed that the feature_names are the
same.

Returns prediction – a numpy array with the probability of each data example being of a given
class.

Return type numpy array

save_model(fname: str)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature names) will not be saved.

Note: See:

https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

Parameters fname (string) – Output file name

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Returns

Return type self

1.7. XGBoost Python Package 115

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://xgboost.readthedocs.io/en/latest/tutorials/saving_model.html

xgboost, Release 1.2.1

Plotting API

Plotting Library.

xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature
importance', xlabel='F score', ylabel='Features', fmap='', im-
portance_type='weight', max_num_features=None, grid=True,
show_values=True, **kwargs)

Plot importance based on fitted trees.

Parameters

• booster (Booster, XGBModel or dict) – Booster or XGBModel instance, or dict
taken by Booster.get_fscore()

• ax (matplotlib Axes, default None) – Target axes instance. If None, new figure
and axes will be created.

• grid (bool, Turn the axes grids on or off. Default is True
(On)) –

• importance_type (str, default "weight") – How the importance is calcu-
lated: either “weight”, “gain”, or “cover”

– ”weight” is the number of times a feature appears in a tree

– ”gain” is the average gain of splits which use the feature

– ”cover” is the average coverage of splits which use the feature where coverage is defined
as the number of samples affected by the split

• max_num_features (int, default None) – Maximum number of top features dis-
played on plot. If None, all features will be displayed.

• height (float, default 0.2) – Bar height, passed to ax.barh()

• xlim (tuple, default None) – Tuple passed to axes.xlim()

• ylim (tuple, default None) – Tuple passed to axes.ylim()

• title (str, default "Feature importance") – Axes title. To disable, pass
None.

• xlabel (str, default "F score") – X axis title label. To disable, pass None.

• ylabel (str, default "Features") – Y axis title label. To disable, pass None.

• fmap (str or os.PathLike (optional)) – The name of feature map file.

• show_values (bool, default True) – Show values on plot. To disable, pass False.

• kwargs – Other keywords passed to ax.barh()

Returns ax

Return type matplotlib Axes

xgboost.plot_tree(booster, fmap='', num_trees=0, rankdir=None, ax=None, **kwargs)
Plot specified tree.

Parameters

• booster (Booster, XGBModel) – Booster or XGBModel instance

• fmap (str (optional)) – The name of feature map file

• num_trees (int, default 0) – Specify the ordinal number of target tree

116 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#tuple
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/os.html#os.PathLike
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

• rankdir (str, default "TB") – Passed to graphiz via graph_attr

• ax (matplotlib Axes, default None) – Target axes instance. If None, new figure
and axes will be created.

• kwargs – Other keywords passed to to_graphviz

Returns ax

Return type matplotlib Axes

xgboost.to_graphviz(booster, fmap='', num_trees=0, rankdir=None, yes_color=None,
no_color=None, condition_node_params=None, leaf_node_params=None,
**kwargs)

Convert specified tree to graphviz instance. IPython can automatically plot the returned graphiz instance. Oth-
erwise, you should call .render() method of the returned graphiz instance.

Parameters

• booster (Booster, XGBModel) – Booster or XGBModel instance

• fmap (str (optional)) – The name of feature map file

• num_trees (int, default 0) – Specify the ordinal number of target tree

• rankdir (str, default "UT") – Passed to graphiz via graph_attr

• yes_color (str, default '#0000FF') – Edge color when meets the node condi-
tion.

• no_color (str, default '#FF0000') – Edge color when doesn’t meet the node
condition.

• condition_node_params (dict, optional) – Condition node configuration for
for graphviz. Example:

{'shape': 'box',
'style': 'filled,rounded',
'fillcolor': '#78bceb'}

• leaf_node_params (dict, optional) – Leaf node configuration for graphviz. Ex-
ample:

{'shape': 'box',
'style': 'filled',
'fillcolor': '#e48038'}

• **kwargs (dict, optional) – Other keywords passed to graphviz graph_attr, e.g.
graph [{key} = {value}]

Returns graph

Return type graphviz.Source

1.7. XGBoost Python Package 117

https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#dict

xgboost, Release 1.2.1

Callback API

xgboost.callback.print_evaluation(period=1, show_stdv=True)
Create a callback that print evaluation result.

We print the evaluation results every period iterations and on the first and the last iterations.

Parameters

• period (int) – The period to log the evaluation results

• show_stdv (bool, optional) – Whether show stdv if provided

Returns callback – A callback that print evaluation every period iterations.

Return type function

xgboost.callback.record_evaluation(eval_result)
Create a call back that records the evaluation history into eval_result.

Parameters eval_result (dict) – A dictionary to store the evaluation results.

Returns callback – The requested callback function.

Return type function

xgboost.callback.reset_learning_rate(learning_rates)
Reset learning rate after iteration 1

NOTE: the initial learning rate will still take in-effect on first iteration.

Parameters learning_rates (list or function) – List of learning rate for each boosting
round or a customized function that calculates eta in terms of current number of round and the
total number of boosting round (e.g. yields learning rate decay)

• list l: eta = l[boosting_round]

• function f: eta = f(boosting_round, num_boost_round)

Returns callback – The requested callback function.

Return type function

xgboost.callback.early_stop(stopping_rounds, maximize=False, verbose=True)
Create a callback that activates early stoppping.

Validation error needs to decrease at least every stopping_rounds round(s) to continue training. Requires at
least one item in evals. If there’s more than one, will use the last. Returns the model from the last iteration (not
the best one). If early stopping occurs, the model will have three additional fields: bst.best_score, bst.
best_iteration and bst.best_ntree_limit. (Use bst.best_ntree_limit to get the correct
value if num_parallel_tree and/or num_class appears in the parameters)

Parameters

• stopp_rounds (int) – The stopping rounds before the trend occur.

• maximize (bool) – Whether to maximize evaluation metric.

• verbose (optional, bool) – Whether to print message about early stopping infor-
mation.

Returns callback – The requested callback function.

Return type function

118 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#bool
https://docs.python.org/3.6/library/functions.html#bool

xgboost, Release 1.2.1

Dask API

Dask extensions for distributed training. See https://xgboost.readthedocs.io/en/latest/tutorials/dask.html for simple
tutorial. Also xgboost/demo/dask for some examples.

There are two sets of APIs in this module, one is the functional API including train and predictmethods. Another
is stateful Scikit-Learner wrapper inherited from single-node Scikit-Learn interface.

The implementation is heavily influenced by dask_xgboost: https://github.com/dask/dask-xgboost

xgboost.dask.DaskDMatrix(client, data, label=None, missing=None, weight=None, fea-
ture_names=None, feature_types=None)

DMatrix holding on references to Dask DataFrame or Dask Array. Constructing a DaskDMatrix forces all
lazy computation to be carried out. Wait for the input data explicitly if you want to see actual computation of
constructing DaskDMatrix.

Note: DaskDMatrix does not repartition or move data between workers. It’s the caller’s responsibility to
balance the data.

New in version 1.0.0.

Parameters

• client (dask.distributed.Client) – Specify the dask client used for training.
Use default client returned from dask if it’s set to None.

• data (dask.array.Array/dask.dataframe.DataFrame) – data source of
DMatrix.

• label (dask.array.Array/dask.dataframe.DataFrame) – label used for
trainin.

• missing (float, optional) – Value in the input data (e.g. numpy.ndarray) which
needs to be present as a missing value. If None, defaults to np.nan.

• weight (dask.array.Array/dask.dataframe.DataFrame) – Weight for each
instance.

• feature_names (list, optional) – Set names for features.

• feature_types (list, optional) – Set types for features

xgboost.dask.train(client, params, dtrain, *args, evals=(), **kwargs)
Train XGBoost model.

New in version 1.0.0.

Parameters

• client (dask.distributed.Client) – Specify the dask client used for training.
Use default client returned from dask if it’s set to None.

• **kwargs – Other parameters are the same as xgboost.train except for evals_result, which
is returned as part of function return value instead of argument.

Returns

results – A dictionary containing trained booster and evaluation history. history field is the same
as eval_result from xgboost.train.

1.7. XGBoost Python Package 119

https://xgboost.readthedocs.io/en/latest/tutorials/dask.html
https://github.com/dask/dask-xgboost
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/stdtypes.html#list
https://docs.python.org/3.6/library/stdtypes.html#list

xgboost, Release 1.2.1

{'booster': xgboost.Booster,
'history': {'train': {'logloss': ['0.48253', '0.35953']},

'eval': {'logloss': ['0.480385', '0.357756']}}}

Return type dict

xgboost.dask.predict(client, model, data, *args, missing=nan)
Run prediction with a trained booster.

Note: Only default prediction mode is supported right now.

New in version 1.0.0.

Parameters

• client (dask.distributed.Client) – Specify the dask client used for training.
Use default client returned from dask if it’s set to None.

• model (A Booster or a dictionary returned by xgboost.dask.train.) – The trained model.

• data (DaskDMatrix/dask.dataframe.DataFrame/dask.array.Array) –
Input data used for prediction.

• missing (float) – Used when input data is not DaskDMatrix. Specify the value consid-
ered as missing.

Returns prediction

Return type dask.array.Array/dask.dataframe.Series

xgboost.dask.DaskXGBClassifier(max_depth=None, learning_rate=None, n_estimators=100,
verbosity=None, objective=None, booster=None,
tree_method=None, n_jobs=None, gamma=None,
min_child_weight=None, max_delta_step=None,
subsample=None, colsample_bytree=None, col-
sample_bylevel=None, colsample_bynode=None,
reg_alpha=None, reg_lambda=None, scale_pos_weight=None,
base_score=None, random_state=None, missing=nan,
num_parallel_tree=None, monotone_constraints=None,
interaction_constraints=None, importance_type='gain',
gpu_id=None, validate_parameters=None, **kwargs)

Implementation of the scikit-learn API for XGBoost classification.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of
boosting rounds.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

120 Chapter 1. Contents

https://docs.python.org/3.6/library/stdtypes.html#dict
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int

xgboost, Release 1.2.1

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

1.7. XGBoost Python Package 121

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst

xgboost, Release 1.2.1

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

xgboost.dask.DaskXGBRegressor(max_depth=None, learning_rate=None, n_estimators=100,
verbosity=None, objective=None, booster=None,
tree_method=None, n_jobs=None, gamma=None,
min_child_weight=None, max_delta_step=None, subsam-
ple=None, colsample_bytree=None, colsample_bylevel=None,
colsample_bynode=None, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, base_score=None, ran-
dom_state=None, missing=nan, num_parallel_tree=None,
monotone_constraints=None, interaction_constraints=None, im-
portance_type='gain', gpu_id=None, validate_parameters=None,
**kwargs)

Implementation of the Scikit-Learn API for XGBoost.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of
boosting rounds.

• max_depth (int) – Maximum tree depth for base learners.

• learning_rate (float) – Boosting learning rate (xgb’s “eta”)

• verbosity (int) – The degree of verbosity. Valid values are 0 (silent) - 3 (debug).

• objective (string or callable) – Specify the learning task and the correspond-
ing learning objective or a custom objective function to be used (see note below).

• booster (string) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (string) – Specify which tree method to use. Default to auto. If this
parameter is set to default, XGBoost will choose the most conservative option available. It’s
recommended to study this option from parameters document.

• n_jobs (int) – Number of parallel threads used to run xgboost.

• gamma (float) – Minimum loss reduction required to make a further partition on a leaf
node of the tree.

• min_child_weight (float) – Minimum sum of instance weight(hessian) needed in a
child.

• max_delta_step (int) – Maximum delta step we allow each tree’s weight estimation
to be.

• subsample (float) – Subsample ratio of the training instance.

• colsample_bytree (float) – Subsample ratio of columns when constructing each
tree.

• colsample_bylevel (float) – Subsample ratio of columns for each level.

• colsample_bynode (float) – Subsample ratio of columns for each split.

• reg_alpha (float (xgb's alpha)) – L1 regularization term on weights

• reg_lambda (float (xgb's lambda)) – L2 regularization term on weights

• scale_pos_weight (float) – Balancing of positive and negative weights.

• base_score – The initial prediction score of all instances, global bias.

122 Chapter 1. Contents

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#float

xgboost, Release 1.2.1

• random_state (int) – Random number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present
as a missing value.

• num_parallel_tree (int) – Used for boosting random forest.

• monotone_constraints (str) – Constraint of variable monotonicity. See tutorial for
more information.

• interaction_constraints (str) – Constraints for interaction representing permit-
ted interactions. The constraints must be specified in the form of a nest list, e.g. [[0, 1], [2,
3, 4]], where each inner list is a group of indices of features that are allowed to interact with
each other. See tutorial for more information

• importance_type (string, default "gain") – The feature importance type for
the feature_importances_ property: either “gain”, “weight”, “cover”, “total_gain” or “to-
tal_cover”.

• **kwargs (dict, optional) – Keyword arguments for XGBoost Booster object.
Full documentation of parameters can be found here: https://github.com/dmlc/xgboost/
blob/master/doc/parameter.rst. Attempting to set a parameter via the constructor args and
**kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

1.8 XGBoost R Package

You have found the XGBoost R Package!

1.8.1 Get Started

• Checkout the Installation Guide contains instructions to install xgboost, and Tutorials for examples on how to
use XGBoost for various tasks.

• Read the API documentation.

• Please visit Walk-through Examples.

1.8. XGBoost R Package 123

https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/functions.html#float
https://docs.python.org/3.6/library/functions.html#int
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#str
https://docs.python.org/3.6/library/stdtypes.html#dict
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://github.com/dmlc/xgboost/blob/master/doc/parameter.rst
https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
https://github.com/dmlc/xgboost/tree/master/R-package/demo

xgboost, Release 1.2.1

1.8.2 Tutorials

XGBoost R Tutorial

Introduction

Xgboost is short for eXtreme Gradient Boosting package.

The purpose of this Vignette is to show you how to use Xgboost to build a model and make predictions.

It is an efficient and scalable implementation of gradient boosting framework by @friedman2000additive and @fried-
man2001greedy. Two solvers are included:

• linear model ;

• tree learning algorithm.

It supports various objective functions, including regression, classification and ranking. The package is made to be
extendible, so that users are also allowed to define their own objective functions easily.

It has been used to win several Kaggle competitions.

It has several features:

• Speed: it can automatically do parallel computation on Windows and Linux, with OpenMP. It is generally over
10 times faster than the classical gbm.

• Input Type: it takes several types of input data:

– Dense Matrix: R’s dense matrix, i.e. matrix ;

– Sparse Matrix: R’s sparse matrix, i.e. Matrix::dgCMatrix ;

– Data File: local data files ;

– xgb.DMatrix: its own class (recommended).

• Sparsity: it accepts sparse input for both tree booster and linear booster, and is optimized for sparse input ;

• Customization: it supports customized objective functions and evaluation functions.

Installation

Github version

For weekly updated version (highly recommended), install from Github:

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

Windows users will need to install Rtools first.

124 Chapter 1. Contents

https://github.com/dmlc/xgboost
http://www.kaggle.com
http://cran.r-project.org/bin/windows/Rtools/

xgboost, Release 1.2.1

CRAN version

The version 0.4-2 is on CRAN, and you can install it by:

install.packages("xgboost")

Formerly available versions can be obtained from the CRAN archive

Learning

For the purpose of this tutorial we will load XGBoost package.

require(xgboost)

Dataset presentation

In this example, we are aiming to predict whether a mushroom can be eaten or not (like in many tutorials, example
data are the same as you will use on in your every day life :-).

Mushroom data is cited from UCI Machine Learning Repository. @Bache+Lichman:2013.

Dataset loading

We will load the agaricus datasets embedded with the package and will link them to variables.

The datasets are already split in:

• train: will be used to build the model ;

• test: will be used to assess the quality of our model.

Why split the dataset in two parts?

In the first part we will build our model. In the second part we will want to test it and assess its quality. Without
dividing the dataset we would test the model on the data which the algorithm have already seen.

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test

In the real world, it would be up to you to make this division between train and test data. The way
to do it is out of scope for this article, however caret package may help.

Each variable is a list containing two things, label and data:

str(train)

List of 2
$ data :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
.. ..@ i : int [1:143286] 2 6 8 11 18 20 21 24 28 32 ...
.. ..@ p : int [1:127] 0 369 372 3306 5845 6489 6513 8380 8384 10991 ...
.. ..@ Dim : int [1:2] 6513 126
.. ..@ Dimnames:List of 2

(continues on next page)

1.8. XGBoost R Package 125

http://cran.r-project.org/src/contrib/Archive/xgboost
http://topepo.github.io/caret/data-splitting.html

xgboost, Release 1.2.1

(continued from previous page)

..$: NULL
..$: chr [1:126] "cap-shape=bell" "cap-shape=conical" "cap-shape=convex"
→˓"cap-shape=flat" ...
.. ..@ x : num [1:143286] 1 1 1 1 1 1 1 1 1 1 ...
.. ..@ factors : list()
$ label: num [1:6513] 1 0 0 1 0 0 0 1 0 0 ...

label is the outcome of our dataset meaning it is the binary classification we will try to predict.

Let’s discover the dimensionality of our datasets.

dim(train$data)

[1] 6513 126

dim(test$data)

[1] 1611 126

This dataset is very small to not make the R package too heavy, however XGBoost is built to manage huge datasets
very efficiently.

As seen below, the data are stored in a dgCMatrix which is a sparse matrix and label vector is a numeric
vector ({0,1}):

class(train$data)[1]

[1] "dgCMatrix"

class(train$label)

[1] "numeric"

Basic Training using XGBoost

This step is the most critical part of the process for the quality of our model.

Basic training

We are using the train data. As explained above, both data and label are stored in a list.

In a sparse matrix, cells containing 0 are not stored in memory. Therefore, in a dataset mainly made of 0, memory
size is reduced. It is very common to have such a dataset.

We will train decision tree model using the following parameters:

• objective = "binary:logistic": we will train a binary classification model ;

• max.depth = 2: the trees won’t be deep, because our case is very simple ;

• nthread = 2: the number of cpu threads we are going to use;

• nrounds = 2: there will be two passes on the data, the second one will enhance the model by further reducing
the difference between ground truth and prediction.

126 Chapter 1. Contents

xgboost, Release 1.2.1

bstSparse <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1,
→˓nthread = 2, nrounds = 2, objective = "binary:logistic")

[0] train-error:0.046522
[1] train-error:0.022263

The more complex the relationship between your features and your label is, the more passes you need.

Parameter variations

Dense matrix

Alternatively, you can put your dataset in a dense matrix, i.e. a basic R matrix.

bstDense <- xgboost(data = as.matrix(train$data), label = train$label, max.depth = 2,
→˓eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")

[0] train-error:0.046522
[1] train-error:0.022263

xgb.DMatrix

XGBoost offers a way to group them in a xgb.DMatrix. You can even add other meta data in it. This will be useful
for the most advanced features we will discover later.

dtrain <- xgb.DMatrix(data = train$data, label = train$label)
bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,
→˓ objective = "binary:logistic")

[0] train-error:0.046522
[1] train-error:0.022263

Verbose option

XGBoost has several features to help you view the learning progress internally. The purpose is to help you to set the
best parameters, which is the key of your model quality.

One of the simplest way to see the training progress is to set the verbose option (see below for more advanced
techniques).

verbose = 0, no message
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,
→˓objective = "binary:logistic", verbose = 0)

verbose = 1, print evaluation metric
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,
→˓objective = "binary:logistic", verbose = 1)

[0] train-error:0.046522
[1] train-error:0.022263

1.8. XGBoost R Package 127

xgboost, Release 1.2.1

verbose = 2, also print information about tree
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,
→˓objective = "binary:logistic", verbose = 2)

[11:41:01] amalgamation/../src/tree/updater_prune.cc:74: tree pruning end, 1 roots,
→˓ 6 extra nodes, 0 pruned nodes, max_depth=2
[0] train-error:0.046522
[11:41:01] amalgamation/../src/tree/updater_prune.cc:74: tree pruning end, 1 roots,
→˓ 4 extra nodes, 0 pruned nodes, max_depth=2
[1] train-error:0.022263

Basic prediction using XGBoost

Perform the prediction

The purpose of the model we have built is to classify new data. As explained before, we will use the test dataset for
this step.

pred <- predict(bst, test$data)

size of the prediction vector
print(length(pred))

[1] 1611

limit display of predictions to the first 10
print(head(pred))

[1] 0.28583017 0.92392391 0.28583017 0.28583017 0.05169873 0.92392391

These numbers doesn’t look like binary classification {0,1}. We need to perform a simple transformation before
being able to use these results.

Transform the regression in a binary classification

The only thing that XGBoost does is a regression. XGBoost is using label vector to build its regression model.

How can we use a regression model to perform a binary classification?

If we think about the meaning of a regression applied to our data, the numbers we get are probabilities that a datum
will be classified as 1. Therefore, we will set the rule that if this probability for a specific datum is > 0.5 then the
observation is classified as 1 (or 0 otherwise).

prediction <- as.numeric(pred > 0.5)
print(head(prediction))

[1] 0 1 0 0 0 1

128 Chapter 1. Contents

xgboost, Release 1.2.1

Measuring model performance

To measure the model performance, we will compute a simple metric, the average error.

err <- mean(as.numeric(pred > 0.5) != test$label)
print(paste("test-error=", err))

[1] "test-error= 0.0217256362507759"

Note that the algorithm has not seen the test data during the model construction.

Steps explanation:

1. as.numeric(pred > 0.5) applies our rule that when the probability (<=> regression <=> prediction) is
> 0.5 the observation is classified as 1 and 0 otherwise ;

2. probabilityVectorPreviouslyComputed != test$label computes the vector of error between
true data and computed probabilities ;

3. mean(vectorOfErrors) computes the average error itself.

The most important thing to remember is that to do a classification, you just do a regression to the label and then
apply a threshold.

Multiclass classification works in a similar way.

This metric is 0.02 and is pretty low: our yummly mushroom model works well!

Advanced features

Most of the features below have been implemented to help you to improve your model by offering a better understand-
ing of its content.

Dataset preparation

For the following advanced features, we need to put data in xgb.DMatrix as explained above.

dtrain <- xgb.DMatrix(data = train$data, label=train$label)
dtest <- xgb.DMatrix(data = test$data, label=test$label)

Measure learning progress with xgb.train

Both xgboost (simple) and xgb.train (advanced) functions train models.

One of the special features of xgb.train is the capacity to follow the progress of the learning after each round.
Because of the way boosting works, there is a time when having too many rounds lead to overfitting. You can see
this feature as a cousin of a cross-validation method. The following techniques will help you to avoid overfitting or
optimizing the learning time in stopping it as soon as possible.

One way to measure progress in the learning of a model is to provide to XGBoost a second dataset already classified.
Therefore it can learn on the first dataset and test its model on the second one. Some metrics are measured after each
round during the learning.

in some way it is similar to what we have done above with the average error. The main difference is that
above it was after building the model, and now it is during the construction that we measure errors.

1.8. XGBoost R Package 129

xgboost, Release 1.2.1

For the purpose of this example, we use watchlist parameter. It is a list of xgb.DMatrix, each of them tagged
with a name.

watchlist <- list(train=dtrain, test=dtest)

bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nrounds=2,
→˓watchlist=watchlist, objective = "binary:logistic")

[0] train-error:0.046522 test-error:0.042831
[1] train-error:0.022263 test-error:0.021726

XGBoost has computed at each round the same average error metric seen above (we set nrounds to 2, that is why
we have two lines). Obviously, the train-error number is related to the training dataset (the one the algorithm
learns from) and the test-error number to the test dataset.

Both training and test error related metrics are very similar, and in some way, it makes sense: what we have learned
from the training dataset matches the observations from the test dataset.

If with your own dataset you do not have such results, you should think about how you divided your dataset in training
and test. May be there is something to fix. Again, caret package may help.

For a better understanding of the learning progression, you may want to have some specific metric or even use multiple
evaluation metrics.

bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nrounds=2,
→˓watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective =
→˓"binary:logistic")

[0] train-error:0.046522 train-logloss:0.233376 test-error:0.
→˓042831 test-logloss:0.226686
[1] train-error:0.022263 train-logloss:0.136658 test-error:0.
→˓021726 test-logloss:0.137874

eval.metric allows us to monitor two new metrics for each round, logloss and error.

Linear boosting

Until now, all the learnings we have performed were based on boosting trees. XGBoost implements a second al-
gorithm, based on linear boosting. The only difference with the previous command is booster = "gblinear"
parameter (and removing eta parameter).

bst <- xgb.train(data=dtrain, booster = "gblinear", nthread = 2, nrounds=2,
→˓watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective =
→˓"binary:logistic")

[0] train-error:0.024720 train-logloss:0.184616 test-error:0.
→˓022967 test-logloss:0.184234
[1] train-error:0.004146 train-logloss:0.069885 test-error:0.
→˓003724 test-logloss:0.068081

In this specific case, linear boosting gets slightly better performance metrics than a decision tree based algorithm.

In simple cases, this will happen because there is nothing better than a linear algorithm to catch a linear link. However,
decision trees are much better to catch a non linear link between predictors and outcome. Because there is no silver
bullet, we advise you to check both algorithms with your own datasets to have an idea of what to use.

130 Chapter 1. Contents

http://topepo.github.io/caret/data-splitting.html

xgboost, Release 1.2.1

Manipulating xgb.DMatrix

Save / Load

Like saving models, xgb.DMatrix object (which groups both dataset and outcome) can also be saved using xgb.
DMatrix.save function.

xgb.DMatrix.save(dtrain, "dtrain.buffer")

[1] TRUE

to load it in, simply call xgb.DMatrix
dtrain2 <- xgb.DMatrix("dtrain.buffer")

[11:41:01] 6513x126 matrix with 143286 entries loaded from dtrain.buffer

bst <- xgb.train(data=dtrain2, max.depth=2, eta=1, nthread = 2, nrounds=2,
→˓watchlist=watchlist, objective = "binary:logistic")

[0] train-error:0.046522 test-error:0.042831
[1] train-error:0.022263 test-error:0.021726

Information extraction

Information can be extracted from an xgb.DMatrix using getinfo function. Hereafter we will extract label
data.

label = getinfo(dtest, "label")
pred <- predict(bst, dtest)
err <- as.numeric(sum(as.integer(pred > 0.5) != label))/length(label)
print(paste("test-error=", err))

[1] "test-error= 0.0217256362507759"

View feature importance/influence from the learnt model

Feature importance is similar to R gbm package’s relative influence (rel.inf).

importance_matrix <- xgb.importance(model = bst)
print(importance_matrix)
xgb.plot.importance(importance_matrix = importance_matrix)

1.8. XGBoost R Package 131

xgboost, Release 1.2.1

View the trees from a model

You can dump the tree you learned using xgb.dump into a text file.

xgb.dump(bst, with_stats = TRUE)

[1] "booster[0]"
[2] "0:[f28<-1.00136e-05] yes=1,no=2,missing=1,gain=4000.53,cover=1628.25"
[3] "1:[f55<-1.00136e-05] yes=3,no=4,missing=3,gain=1158.21,cover=924.5"
[4] "3:leaf=1.71218,cover=812"
[5] "4:leaf=-1.70044,cover=112.5"
[6] "2:[f108<-1.00136e-05] yes=5,no=6,missing=5,gain=198.174,cover=703.75"
[7] "5:leaf=-1.94071,cover=690.5"
[8] "6:leaf=1.85965,cover=13.25"
[9] "booster[1]"
[10] "0:[f59<-1.00136e-05] yes=1,no=2,missing=1,gain=832.545,cover=788.852"
[11] "1:[f28<-1.00136e-05] yes=3,no=4,missing=3,gain=569.725,cover=768.39"
[12] "3:leaf=0.784718,cover=458.937"
[13] "4:leaf=-0.96853,cover=309.453"
[14] "2:leaf=-6.23624,cover=20.4624"

You can plot the trees from your model using ```xgb.plot.tree``

xgb.plot.tree(model = bst)

if you provide a path to fname parameter you can save the trees to your hard drive.

Save and load models

Maybe your dataset is big, and it takes time to train a model on it? May be you are not a big fan of losing time in
redoing the same task again and again? In these very rare cases, you will want to save your model and load it when
required.

Helpfully for you, XGBoost implements such functions.

save model to binary local file
xgb.save(bst, "xgboost.model")

[1] TRUE

xgb.save function should return TRUE if everything goes well and crashes otherwise.

An interesting test to see how identical our saved model is to the original one would be to compare the two predictions.

load binary model to R
bst2 <- xgb.load("xgboost.model")
pred2 <- predict(bst2, test$data)

And now the test
print(paste("sum(abs(pred2-pred))=", sum(abs(pred2-pred))))

[1] "sum(abs(pred2-pred))= 0"

result is 0? We are good!

In some very specific cases, like when you want to pilot XGBoost from caret package, you will want to save the
model as a R binary vector. See below how to do it.

132 Chapter 1. Contents

xgboost, Release 1.2.1

save model to R's raw vector
rawVec <- xgb.save.raw(bst)

print class
print(class(rawVec))

[1] "raw"

load binary model to R
bst3 <- xgb.load(rawVec)
pred3 <- predict(bst3, test$data)

pred3 should be identical to pred
print(paste("sum(abs(pred3-pred))=", sum(abs(pred3-pred))))

[1] "sum(abs(pred3-pred))= 0"

Again 0? It seems that XGBoost works pretty well!

References

Understand your dataset with XGBoost

Introduction

The purpose of this Vignette is to show you how to use Xgboost to discover and understand your own dataset better.

This Vignette is not about predicting anything (see Xgboost presentation). We will explain how to use Xgboost to
highlight the link between the features of your data and the outcome.

Package loading:

require(xgboost)
require(Matrix)
require(data.table)
if (!require('vcd')) install.packages('vcd')

VCD package is used for one of its embedded dataset only.

Preparation of the dataset

Numeric VS categorical variables

Xgboost manages only numeric vectors.

What to do when you have categorical data?

A categorical variable has a fixed number of different values. For instance, if a variable called Colour can have only
one of these three values, red, blue or green, then Colour is a categorical variable.

In R, a categorical variable is called factor.

Type ?factor in the console for more information.

To answer the question above we will convert categorical variables to numeric one.

1.8. XGBoost R Package 133

https://github.com/dmlc/xgboost/blob/master/R-package/vignettes/xgboostPresentation.Rmd

xgboost, Release 1.2.1

Conversion from categorical to numeric variables

Looking at the raw data

In this Vignette we will see how to transform a dense data.frame (dense = few zeroes in the matrix) with categor-
ical variables to a very sparse matrix (sparse = lots of zero in the matrix) of numeric features.

The method we are going to see is usually called one-hot encoding.

The first step is to load Arthritis dataset in memory and wrap it with data.table package.

data(Arthritis)
df <- data.table(Arthritis, keep.rownames = FALSE)

data.table is 100% compliant with R data.frame but its syntax is more consistent and its perfor-
mance for large dataset is best in class (dplyr from R and Pandas from Python included). Some parts
of Xgboost R package use data.table.

The first thing we want to do is to have a look to the first lines of the data.table:

head(df)

ID Treatment Sex Age Improved
1: 57 Treated Male 27 Some
2: 46 Treated Male 29 None
3: 77 Treated Male 30 None
4: 17 Treated Male 32 Marked
5: 36 Treated Male 46 Marked
6: 23 Treated Male 58 Marked

Now we will check the format of each column.

str(df)

Classes 'data.table' and 'data.frame': 84 obs. of 5 variables:
$ ID : int 57 46 77 17 36 23 75 39 33 55 ...
$ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
$ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
$ Age : int 27 29 30 32 46 58 59 59 63 63 ...
$ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...
- attr(*, ".internal.selfref")=<externalptr>

2 columns have factor type, one has ordinal type.

ordinal variable :

• can take a limited number of values (like factor) ;

• these values are ordered (unlike factor). Here these ordered values are: Marked > Some >
None

134 Chapter 1. Contents

http://en.wikipedia.org/wiki/One-hot
http://stackoverflow.com/questions/21435339/data-table-vs-dplyr-can-one-do-something-well-the-other-cant-or-does-poorly
https://github.com/Rdatatable/data.table/wiki/Benchmarks-%3A-Grouping

xgboost, Release 1.2.1

Creation of new features based on old ones

We will add some new categorical features to see if it helps.

Grouping per 10 years

For the first feature we create groups of age by rounding the real age.

Note that we transform it to factor so the algorithm treat these age groups as independent values.

Therefore, 20 is not closer to 30 than 60. To make it short, the distance between ages is lost in this transformation.

head(df[,AgeDiscret := as.factor(round(Age/10,0))])

ID Treatment Sex Age Improved AgeDiscret
1: 57 Treated Male 27 Some 3
2: 46 Treated Male 29 None 3
3: 77 Treated Male 30 None 3
4: 17 Treated Male 32 Marked 3
5: 36 Treated Male 46 Marked 5
6: 23 Treated Male 58 Marked 6

Random split in two groups

Following is an even stronger simplification of the real age with an arbitrary split at 30 years old. I choose this value
based on nothing. We will see later if simplifying the information based on arbitrary values is a good strategy (you
may already have an idea of how well it will work. . .).

head(df[,AgeCat:= as.factor(ifelse(Age > 30, "Old", "Young"))])

ID Treatment Sex Age Improved AgeDiscret AgeCat
1: 57 Treated Male 27 Some 3 Young
2: 46 Treated Male 29 None 3 Young
3: 77 Treated Male 30 None 3 Young
4: 17 Treated Male 32 Marked 3 Old
5: 36 Treated Male 46 Marked 5 Old
6: 23 Treated Male 58 Marked 6 Old

Risks in adding correlated features

These new features are highly correlated to the Age feature because they are simple transformations of this feature.

For many machine learning algorithms, using correlated features is not a good idea. It may sometimes make prediction
less accurate, and most of the time make interpretation of the model almost impossible. GLM, for instance, assumes
that the features are uncorrelated.

Fortunately, decision tree algorithms (including boosted trees) are very robust to these features. Therefore we have
nothing to do to manage this situation.

1.8. XGBoost R Package 135

xgboost, Release 1.2.1

Cleaning data

We remove ID as there is nothing to learn from this feature (it would just add some noise).

df[,ID:=NULL]

We will list the different values for the column Treatment:

levels(df[,Treatment])

[1] "Placebo" "Treated"

One-hot encoding

Next step, we will transform the categorical data to dummy variables. This is the one-hot encoding step.

The purpose is to transform each value of each categorical feature in a binary feature {0, 1}.

For example, the column Treatmentwill be replaced by two columns, Placebo, and Treated. Each of them will
be binary. Therefore, an observation which has the value Placebo in column Treatment before the transformation
will have after the transformation the value 1 in the new column Placebo and the value 0 in the new column
Treated. The column Treatment will disappear during the one-hot encoding.

Column Improved is excluded because it will be our label column, the one we want to predict.

sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
head(sparse_matrix)

6 x 10 sparse Matrix of class "dgCMatrix"
##
1 . 1 1 27 1 1
2 . 1 1 29 1 1
3 . 1 1 30 1 1
4 . 1 1 32 1
5 . 1 1 46 . . 1 . . .
6 . 1 1 58 . . . 1 . .

Formulae Improved~.-1 used above means transform all categorical features but column Improved
to binary values. The -1 is here to remove the first column which is full of 1 (this column is generated
by the conversion). For more information, you can type ?sparse.model.matrix in the console.

Create the output numeric vector (not as a sparse Matrix):

output_vector = df[,Improved] == "Marked"

1. set Y vector to 0;

2. set Y to 1 for rows where Improved == Marked is TRUE ;

3. return Y vector.

136 Chapter 1. Contents

http://en.wikipedia.org/wiki/One-hot

xgboost, Release 1.2.1

Build the model

The code below is very usual. For more information, you can look at the documentation of xgboost function (or at
the vignette Xgboost presentation).

bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 4,
eta = 1, nthread = 2, nrounds = 10,objective = "binary:logistic")

[0] train-error:0.202381
[1] train-error:0.166667
[2] train-error:0.166667
[3] train-error:0.166667
[4] train-error:0.154762
[5] train-error:0.154762
[6] train-error:0.154762
[7] train-error:0.166667
[8] train-error:0.166667
[9] train-error:0.166667

You can see some train-error: 0.XXXXX lines followed by a number. It decreases. Each line shows how well
the model explains your data. Lower is better.

A model which fits too well may overfit (meaning it copy/paste too much the past, and won’t be that good to predict
the future).

Here you can see the numbers decrease until line 7 and then increase.

It probably means we are overfitting. To fix that I should reduce the number of rounds to nrounds =
4. I will let things like that because I don’t really care for the purpose of this example :-)

Feature importance

Measure feature importance

Build the feature importance data.table

In the code below, sparse_matrix@Dimnames[[2]] represents the column names of the sparse matrix. These
names are the original values of the features (remember, each binary column == one value of one categorical feature).

importance <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst)
head(importance)

Feature Gain Cover Frequency
1: Age 0.622031651 0.67251706 0.67241379
2: TreatmentPlacebo 0.285750607 0.11916656 0.10344828
3: SexMale 0.048744054 0.04522027 0.08620690
4: AgeDiscret6 0.016604647 0.04784637 0.05172414
5: AgeDiscret3 0.016373791 0.08028939 0.05172414
6: AgeDiscret4 0.009270558 0.02858801 0.01724138

The column Gain provide the information we are looking for.

As you can see, features are classified by Gain.

Gain is the improvement in accuracy brought by a feature to the branches it is on. The idea is that before adding
a new split on a feature X to the branch there was some wrongly classified elements, after adding the split on this

1.8. XGBoost R Package 137

https://github.com/dmlc/xgboost/blob/master/R-package/vignettes/xgboostPresentation.Rmd
http://en.wikipedia.org/wiki/Overfitting

xgboost, Release 1.2.1

feature, there are two new branches, and each of these branch is more accurate (one branch saying if your observation
is on this branch then it should be classified as 1, and the other branch saying the exact opposite).

Cover measures the relative quantity of observations concerned by a feature.

Frequency is a simpler way to measure the Gain. It just counts the number of times a feature is used in all generated
trees. You should not use it (unless you know why you want to use it).

Improvement in the interpretability of feature importance data.table

We can go deeper in the analysis of the model. In the data.table above, we have discovered which features counts
to predict if the illness will go or not. But we don’t yet know the role of these features. For instance, one of the
question we may want to answer would be: does receiving a placebo treatment helps to recover from the illness?

One simple solution is to count the co-occurrences of a feature and a class of the classification.

For that purpose we will execute the same function as above but using two more parameters, data and label.

importanceRaw <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model =
→˓bst, data = sparse_matrix, label = output_vector)

Cleaning for better display
importanceClean <- importanceRaw[,`:=`(Cover=NULL, Frequency=NULL)]

head(importanceClean)

Feature Split Gain RealCover RealCover %
1: TreatmentPlacebo -1.00136e-05 0.28575061 7 0.2500000
2: Age 61.5 0.16374034 12 0.4285714
3: Age 39 0.08705750 8 0.2857143
4: Age 57.5 0.06947553 11 0.3928571
5: SexMale -1.00136e-05 0.04874405 4 0.1428571
6: Age 53.5 0.04620627 10 0.3571429

In the table above we have removed two not needed columns and select only the first lines.

First thing you notice is the new column Split. It is the split applied to the feature on a branch of one of the tree.
Each split is present, therefore a feature can appear several times in this table. Here we can see the feature Age is used
several times with different splits.

How the split is applied to count the co-occurrences? It is always <. For instance, in the second line, we measure the
number of persons under 61.5 years with the illness gone after the treatment.

The two other new columns are RealCover and RealCover %. In the first column it measures the number of
observations in the dataset where the split is respected and the label marked as 1. The second column is the percentage
of the whole population that RealCover represents.

Therefore, according to our findings, getting a placebo doesn’t seem to help but being younger than 61 years may help
(seems logic).

You may wonder how to interpret the < 1.00001 on the first line. Basically, in a sparse Matrix, there
is no 0, therefore, looking for one hot-encoded categorical observations validating the rule < 1.00001
is like just looking for 1 for this feature.

138 Chapter 1. Contents

xgboost, Release 1.2.1

Plotting the feature importance

All these things are nice, but it would be even better to plot the results.

xgb.plot.importance(importance_matrix = importanceRaw)

Error in xgb.plot.importance(importance_matrix = importanceRaw): Importance matrix
→˓is not correct (column names issue)

Feature have automatically been divided in 2 clusters: the interesting features. . . and the others.

Depending of the dataset and the learning parameters you may have more than two clusters. Default value
is to limit them to 10, but you can increase this limit. Look at the function documentation for more
information.

According to the plot above, the most important features in this dataset to predict if the treatment will work are :

• the Age ;

• having received a placebo or not ;

• the sex is third but already included in the not interesting features group ;

• then we see our generated features (AgeDiscret). We can see that their contribution is very low.

Do these results make sense?

Let’s check some Chi2 between each of these features and the label.

Higher Chi2 means better correlation.

c2 <- chisq.test(df$Age, output_vector)
print(c2)

##
Pearson's Chi-squared test
##
data: df$Age and output_vector
X-squared = 35.475, df = 35, p-value = 0.4458

Pearson correlation between Age and illness disappearing is 35.48.

c2 <- chisq.test(df$AgeDiscret, output_vector)
print(c2)

##
Pearson's Chi-squared test
##
data: df$AgeDiscret and output_vector
X-squared = 8.2554, df = 5, p-value = 0.1427

Our first simplification of Age gives a Pearson correlation is 8.26.

c2 <- chisq.test(df$AgeCat, output_vector)
print(c2)

1.8. XGBoost R Package 139

xgboost, Release 1.2.1

##
Pearson's Chi-squared test with Yates' continuity correction
##
data: df$AgeCat and output_vector
X-squared = 2.3571, df = 1, p-value = 0.1247

The perfectly random split I did between young and old at 30 years old have a low correlation of 2.36. It’s a result we
may expect as may be in my mind > 30 years is being old (I am 32 and starting feeling old, this may explain that), but
for the illness we are studying, the age to be vulnerable is not the same.

Morality: don’t let your gut lower the quality of your model.

In data science expression, there is the word science :-)

Conclusion

As you can see, in general destroying information by simplifying it won’t improve your model. Chi2 just demonstrates
that.

But in more complex cases, creating a new feature based on existing one which makes link with the outcome more
obvious may help the algorithm and improve the model.

The case studied here is not enough complex to show that. Check Kaggle website for some challenging datasets.
However it’s almost always worse when you add some arbitrary rules.

Moreover, you can notice that even if we have added some not useful new features highly correlated with other features,
the boosting tree algorithm have been able to choose the best one, which in this case is the Age.

Linear models may not be that smart in this scenario.

Special Note: What about Random Forests™?

As you may know, Random Forests™ algorithm is cousin with boosting and both are part of the ensemble learning
family.

Both train several decision trees for one dataset. The main difference is that in Random Forests™, trees are independent
and in boosting, the tree N+1 focus its learning on the loss (<=> what has not been well modeled by the tree N).

This difference have an impact on a corner case in feature importance analysis: the correlated features.

Imagine two features perfectly correlated, feature A and feature B. For one specific tree, if the algorithm needs one of
them, it will choose randomly (true in both boosting and Random Forests™).

However, in Random Forests™ this random choice will be done for each tree, because each tree is independent from
the others. Therefore, approximatively, depending of your parameters, 50% of the trees will choose feature A and
the other 50% will choose feature B. So the importance of the information contained in A and B (which is the same,
because they are perfectly correlated) is diluted in A and B. So you won’t easily know this information is important to
predict what you want to predict! It is even worse when you have 10 correlated features. . .

In boosting, when a specific link between feature and outcome have been learned by the algorithm, it will try to not
refocus on it (in theory it is what happens, reality is not always that simple). Therefore, all the importance will be on
feature A or on feature B (but not both). You will know that one feature have an important role in the link between the
observations and the label. It is still up to you to search for the correlated features to the one detected as important if
you need to know all of them.

If you want to try Random Forests™ algorithm, you can tweak Xgboost parameters!

Warning: this is still an experimental parameter.

140 Chapter 1. Contents

http://www.kaggle.com/
http://en.wikipedia.org/wiki/Random_forest
http://en.wikipedia.org/wiki/Ensemble_learning

xgboost, Release 1.2.1

For instance, to compute a model with 1000 trees, with a 0.5 factor on sampling rows and columns:

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test

#Random Forest™ - 1000 trees
bst <- xgboost(data = train$data, label = train$label, max.depth = 4, num_parallel_
→˓tree = 1000, subsample = 0.5, colsample_bytree =0.5, nrounds = 1, objective =
→˓"binary:logistic")

[0] train-error:0.002150

#Boosting - 3 rounds
bst <- xgboost(data = train$data, label = train$label, max.depth = 4, nrounds = 3,
→˓objective = "binary:logistic")

[0] train-error:0.006142
[1] train-error:0.006756
[2] train-error:0.001228

Note that the parameter round is set to 1.

Random Forests™ is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford
Systems for the commercial release of the software.

1.9 XGBoost JVM Package

You have found the XGBoost JVM Package!

1.9.1 Installation

• Installation from Maven repository

– Access release version

– Access SNAPSHOT version

• Installation from source

– Enabling OpenMP for Mac OS

– Building with GPU support

1.9. XGBoost JVM Package 141

https://www.stat.berkeley.edu/~breiman/RandomForests/cc_papers.htm

xgboost, Release 1.2.1

Installation from Maven repository

Access release version

You can use XGBoost4J in your Java/Scala application by adding XGBoost4J as a dependency:

Listing 15: Maven

<properties>
...
<!-- Specify Scala version in package name -->
<scala.binary.version>2.12</scala.binary.version>

</properties>

<dependencies>
...
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
<version>latest_version_num</version>

</dependency>
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark_${scala.binary.version}</artifactId>
<version>latest_version_num</version>

</dependency>
</dependencies>

Listing 16: sbt

libraryDependencies ++= Seq(
"ml.dmlc" %% "xgboost4j" % "latest_version_num",
"ml.dmlc" %% "xgboost4j-spark" % "latest_version_num"

)

This will check out the latest stable version from the Maven Central.

For the latest release version number, please check here.

Note: Using Maven repository hosted by the XGBoost project

There may be some delay until a new release becomes available to Maven Central. If you would like to access the
latest release immediately, add the Maven repository hosted by the XGBoost project:

Listing 17: Maven

<repository>
<id>XGBoost4J Release Repo</id>
<name>XGBoost4J Release Repo</name>
<url>https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/release/</url>

</repository>

Listing 18: sbt

resolvers += "XGBoost4J Release Repo" at "https://s3-us-west-2.amazonaws.com/xgboost-
→˓maven-repo/release/"

142 Chapter 1. Contents

https://github.com/dmlc/xgboost/releases

xgboost, Release 1.2.1

Access SNAPSHOT version

First add the following Maven repository hosted by the XGBoost project:

Listing 19: Maven

<repository>
<id>XGBoost4J Snapshot Repo</id>
<name>XGBoost4J Snapshot Repo</name>
<url>https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/snapshot/</url>

</repository>

Listing 20: sbt

resolvers += "XGBoost4J Snapshot Repo" at "https://s3-us-west-2.amazonaws.com/xgboost-
→˓maven-repo/snapshot/"

Then add XGBoost4J as a dependency:

Listing 21: maven

<properties>
...
<!-- Specify Scala version in package name -->
<scala.binary.version>2.12</scala.binary.version>

</properties>

<dependencies>
...
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
<version>latest_version_num-SNAPSHOT</version>

</dependency>
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark_${scala.binary.version}</artifactId>
<version>latest_version_num-SNAPSHOT</version>

</dependency>
</dependencies>

Listing 22: sbt

libraryDependencies ++= Seq(
"ml.dmlc" %% "xgboost4j" % "latest_version_num-SNAPSHOT",
"ml.dmlc" %% "xgboost4j-spark" % "latest_version_num-SNAPSHOT"

)

Look up the version field in pom.xml to get the correct version number.

The SNAPSHOT JARs are hosted by the XGBoost project. Every commit in the master branch will automatically
trigger generation of a new SNAPSHOT JAR. You can control how often Maven should upgrade your SNAPSHOT
installation by specifying updatePolicy. See here for details.

You can browse the file listing of the Maven repository at https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/
list.html.

1.9. XGBoost JVM Package 143

https://github.com/dmlc/xgboost/blob/master/jvm-packages/pom.xml
http://maven.apache.org/pom.html#Repositories
https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/list.html
https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/list.html

xgboost, Release 1.2.1

Note: Windows not supported by published JARs

The published JARs from the Maven Central and GitHub currently only supports Linux and MacOS. Windows users
should consider building XGBoost4J / XGBoost4J-Spark from the source. Alternatively, checkout pre-built JARs from
criteo-forks/xgboost-jars.

Installation from source

Building XGBoost4J using Maven requires Maven 3 or newer, Java 7+ and CMake 3.3+ for compiling the JNI bind-
ings.

Before you install XGBoost4J, you need to define environment variable JAVA_HOME as your JDK directory to ensure
that your compiler can find jni.h correctly, since XGBoost4J relies on JNI to implement the interaction between the
JVM and native libraries.

After your JAVA_HOME is defined correctly, it is as simple as run mvn package under jvm-packages directory to
install XGBoost4J. You can also skip the tests by running mvn -DskipTests=true package, if you are sure
about the correctness of your local setup.

To publish the artifacts to your local maven repository, run

mvn install

Or, if you would like to skip tests, run

mvn -DskipTests install

This command will publish the xgboost binaries, the compiled java classes as well as the java sources to your local
repository. Then you can use XGBoost4J in your Java projects by including the following dependency in pom.xml:

<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j</artifactId>
<version>latest_source_version_num</version>

</dependency>

For sbt, please add the repository and dependency in build.sbt as following:

resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/
→˓repository"

"ml.dmlc" % "xgboost4j" % "latest_source_version_num"

If you want to use XGBoost4J-Spark, replace xgboost4j with xgboost4j-spark.

Note: XGBoost4J-Spark requires Apache Spark 2.3+

XGBoost4J-Spark now requires Apache Spark 2.3+. Latest versions of XGBoost4J-Spark uses facilities of
org.apache.spark.ml.param.shared extensively to provide for a tight integration with Spark MLLIB framework, and
these facilities are not fully available on earlier versions of Spark.

Also, make sure to install Spark directly from Apache website. Upstream XGBoost is not guaranteed to work
with third-party distributions of Spark, such as Cloudera Spark. Consult appropriate third parties to obtain their
distribution of XGBoost.

144 Chapter 1. Contents

https://github.com/criteo-forks/xgboost-jars
https://spark.apache.org/

xgboost, Release 1.2.1

Enabling OpenMP for Mac OS

If you are on Mac OS and using a compiler that supports OpenMP, you need to go to the file xgboost/
jvm-packages/create_jni.py and comment out the line

CONFIG["USE_OPENMP"] = "OFF"

in order to get the benefit of multi-threading.

Building with GPU support

If you want to build XGBoost4J that supports distributed GPU training, run

mvn -Duse.cuda=ON install

1.9.2 Contents

Getting Started with XGBoost4J

This tutorial introduces Java API for XGBoost.

Data Interface

Like the XGBoost python module, XGBoost4J uses DMatrix to handle data. LIBSVM txt format file, sparse matrix
in CSR/CSC format, and dense matrix are supported.

• The first step is to import DMatrix:

import ml.dmlc.xgboost4j.java.DMatrix;

• Use DMatrix constructor to load data from a libsvm text format file:

DMatrix dmat = new DMatrix("train.svm.txt");

• Pass arrays to DMatrix constructor to load from sparse matrix.

Suppose we have a sparse matrix

1 0 2 0
4 0 0 3
3 1 2 0

We can express the sparse matrix in Compressed Sparse Row (CSR) format:

long[] rowHeaders = new long[] {0,2,4,7};
float[] data = new float[] {1f,2f,4f,3f,3f,1f,2f};
int[] colIndex = new int[] {0,2,0,3,0,1,2};
int numColumn = 4;
DMatrix dmat = new DMatrix(rowHeaders, colIndex, data, DMatrix.SparseType.CSR,
→˓numColumn);

. . . or in Compressed Sparse Column (CSC) format:

1.9. XGBoost JVM Package 145

https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_row_(CSR,_CRS_or_Yale_format)
https://en.wikipedia.org/wiki/Sparse_matrix#Compressed_sparse_column_(CSC_or_CCS)

xgboost, Release 1.2.1

long[] colHeaders = new long[] {0,3,4,6,7};
float[] data = new float[] {1f,4f,3f,1f,2f,2f,3f};
int[] rowIndex = new int[] {0,1,2,2,0,2,1};
int numRow = 3;
DMatrix dmat = new DMatrix(colHeaders, rowIndex, data, DMatrix.SparseType.CSC,
→˓numRow);

• You may also load your data from a dense matrix. Let’s assume we have a matrix of form

1 2
3 4
5 6

Using row-major layout, we specify the dense matrix as follows:

float[] data = new float[] {1f,2f,3f,4f,5f,6f};
int nrow = 3;
int ncol = 2;
float missing = 0.0f;
DMatrix dmat = new DMatrix(data, nrow, ncol, missing);

• To set weight:

float[] weights = new float[] {1f,2f,1f};
dmat.setWeight(weights);

Setting Parameters

To set parameters, parameters are specified as a Map:

Map<String, Object> params = new HashMap<String, Object>() {
{
put("eta", 1.0);
put("max_depth", 2);
put("objective", "binary:logistic");
put("eval_metric", "logloss");

}
};

Training Model

With parameters and data, you are able to train a booster model.

• Import Booster and XGBoost:

import ml.dmlc.xgboost4j.java.Booster;
import ml.dmlc.xgboost4j.java.XGBoost;

• Training

DMatrix trainMat = new DMatrix("train.svm.txt");
DMatrix validMat = new DMatrix("valid.svm.txt");
// Specify a watch list to see model accuracy on data sets
Map<String, DMatrix> watches = new HashMap<String, DMatrix>() {

(continues on next page)

146 Chapter 1. Contents

https://en.wikipedia.org/wiki/Row-_and_column-major_order

xgboost, Release 1.2.1

(continued from previous page)

{
put("train", trainMat);
put("test", testMat);

}
};
int nround = 2;
Booster booster = XGBoost.train(trainMat, params, nround, watches, null, null);

• Saving model

After training, you can save model and dump it out.

booster.saveModel("model.bin");

• Generaing model dump with feature map

// dump without feature map
String[] model_dump = booster.getModelDump(null, false);
// dump with feature map
String[] model_dump_with_feature_map = booster.getModelDump("featureMap.txt",
→˓false);

• Load a model

Booster booster = XGBoost.loadModel("model.bin");

Prediction

After training and loading a model, you can use it to make prediction for other data. The result will be a two-
dimension float array (nsample, nclass); for predictLeaf(), the result would be of shape (nsample,
nclass*ntrees).

DMatrix dtest = new DMatrix("test.svm.txt");
// predict
float[][] predicts = booster.predict(dtest);
// predict leaf
float[][] leafPredicts = booster.predictLeaf(dtest, 0);

XGBoost4J-Spark Tutorial (version 0.9+)

XGBoost4J-Spark is a project aiming to seamlessly integrate XGBoost and Apache Spark by fitting XGBoost to
Apache Spark’s MLLIB framework. With the integration, user can not only uses the high-performant algorithm
implementation of XGBoost, but also leverages the powerful data processing engine of Spark for:

• Feature Engineering: feature extraction, transformation, dimensionality reduction, and selection, etc.

• Pipelines: constructing, evaluating, and tuning ML Pipelines

• Persistence: persist and load machine learning models and even whole Pipelines

This tutorial is to cover the end-to-end process to build a machine learning pipeline with XGBoost4J-Spark. We will
discuss

• Using Spark to preprocess data to fit to XGBoost/XGBoost4J-Spark’s data interface

• Training a XGBoost model with XGBoost4J-Spark

1.9. XGBoost JVM Package 147

xgboost, Release 1.2.1

• Serving XGBoost model (prediction) with Spark

• Building a Machine Learning Pipeline with XGBoost4J-Spark

• Running XGBoost4J-Spark in Production

• Build an ML Application with XGBoost4J-Spark

– Refer to XGBoost4J-Spark Dependency

– Data Preparation

* Read Dataset with Spark’s Built-In Reader

* Transform Raw Iris Dataset

· Dealing with missing values

– Training

* Early Stopping

* Training with Evaluation Sets

– Prediction

* Batch Prediction

* Single instance prediction

– Model Persistence

* Model and pipeline persistence

* Interact with Other Bindings of XGBoost

• Building a ML Pipeline with XGBoost4J-Spark

– Basic ML Pipeline

– Pipeline with Hyper-parameter Tunning

• Run XGBoost4J-Spark in Production

– Parallel/Distributed Training

– Gang Scheduling

– Checkpoint During Training

Build an ML Application with XGBoost4J-Spark

Refer to XGBoost4J-Spark Dependency

Before we go into the tour of how to use XGBoost4J-Spark, you should first consult Installation from Maven repository
in order to add XGBoost4J-Spark as a dependency for your project. We provide both stable releases and snapshots.

Note: XGBoost4J-Spark requires Apache Spark 2.4+

XGBoost4J-Spark now requires Apache Spark 2.4+. Latest versions of XGBoost4J-Spark uses facilities of
org.apache.spark.ml.param.shared extensively to provide for a tight integration with Spark MLLIB framework, and
these facilities are not fully available on earlier versions of Spark.

148 Chapter 1. Contents

xgboost, Release 1.2.1

Also, make sure to install Spark directly from Apache website. Upstream XGBoost is not guaranteed to work
with third-party distributions of Spark, such as Cloudera Spark. Consult appropriate third parties to obtain their
distribution of XGBoost.

Installation from maven repo

Note: Use of Python in XGBoost4J-Spark

By default, we use the tracker in dmlc-core to drive the training with XGBoost4J-Spark. It requires Python 2.7+. We
also have an experimental Scala version of tracker which can be enabled by passing the parameter tracker_conf
as scala.

Data Preparation

As aforementioned, XGBoost4J-Spark seamlessly integrates Spark and XGBoost. The integration enables users to
apply various types of transformation over the training/test datasets with the convenient and powerful data processing
framework, Spark.

In this section, we use Iris dataset as an example to showcase how we use Spark to transform raw dataset and make it
fit to the data interface of XGBoost.

Iris dataset is shipped in CSV format. Each instance contains 4 features, “sepal length”, “sepal width”, “petal length”
and “petal width”. In addition, it contains the “class” columnm, which is essentially the label with three possible
values: “Iris Setosa”, “Iris Versicolour” and “Iris Virginica”.

Read Dataset with Spark’s Built-In Reader

The first thing in data transformation is to load the dataset as Spark’s structured data abstraction, DataFrame.

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}

val spark = SparkSession.builder().getOrCreate()
val schema = new StructType(Array(
StructField("sepal length", DoubleType, true),
StructField("sepal width", DoubleType, true),
StructField("petal length", DoubleType, true),
StructField("petal width", DoubleType, true),
StructField("class", StringType, true)))

val rawInput = spark.read.schema(schema).csv("input_path")

At the first line, we create a instance of SparkSession which is the entry of any Spark program working with
DataFrame. The schema variable defines the schema of DataFrame wrapping Iris data. With this explicitly set
schema, we can define the columns’ name as well as their types; otherwise the column name would be the default
ones derived by Spark, such as _col0, etc. Finally, we can use Spark’s built-in csv reader to load Iris csv file as a
DataFrame named rawInput.

Spark also contains many built-in readers for other format. The latest version of Spark supports CSV, JSON, Parquet,
and LIBSVM.

1.9. XGBoost JVM Package 149

https://spark.apache.org/
https://github.com/dmlc/dmlc-core/tree/master/tracker
https://archive.ics.uci.edu/ml/datasets/iris
http://spark.apache.org/docs/latest/sql-programming-guide.html#starting-point-sparksession

xgboost, Release 1.2.1

Transform Raw Iris Dataset

To make Iris dataset be recognizable to XGBoost, we need to

1. Transform String-typed label, i.e. “class”, to Double-typed label.

2. Assemble the feature columns as a vector to fit to the data interface of Spark ML framework.

To convert String-typed label to Double, we can use Spark’s built-in feature transformer StringIndexer.

import org.apache.spark.ml.feature.StringIndexer
val stringIndexer = new StringIndexer().

setInputCol("class").
setOutputCol("classIndex").
fit(rawInput)

val labelTransformed = stringIndexer.transform(rawInput).drop("class")

With a newly created StringIndexer instance:

1. we set input column, i.e. the column containing String-typed label

2. we set output column, i.e. the column to contain the Double-typed label.

3. Then we fit StringIndex with our input DataFrame rawInput, so that Spark internals can get information
like total number of distinct values, etc.

Now we have a StringIndexer which is ready to be applied to our input DataFrame. To execute the transformation
logic of StringIndexer, we transform the input DataFrame rawInput and to keep a concise DataFrame, we drop
the column “class” and only keeps the feature columns and the transformed Double-typed label column (in the last
line of the above code snippet).

The fit and transform are two key operations in MLLIB. Basically, fit produces a “transformer”, e.g. StringIn-
dexer, and each transformer applies transform method on DataFrame to add new column(s) containing transformed
features/labels or prediction results, etc. To understand more about fit and transform, You can find more details
in here.

Similarly, we can use another transformer, VectorAssembler, to assemble feature columns “sepal length”, “sepal
width”, “petal length” and “petal width” as a vector.

import org.apache.spark.ml.feature.VectorAssembler
val vectorAssembler = new VectorAssembler().
setInputCols(Array("sepal length", "sepal width", "petal length", "petal width")).
setOutputCol("features")

val xgbInput = vectorAssembler.transform(labelTransformed).select("features",
→˓"classIndex")

Now, we have a DataFrame containing only two columns, “features” which contains vector-represented “sepal length”,
“sepal width”, “petal length” and “petal width” and “classIndex” which has Double-typed labels. A DataFrame like
this (containing vector-represented features and numeric labels) can be fed to XGBoost4J-Spark’s training engine
directly.

150 Chapter 1. Contents

https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.ml.feature.StringIndexer
http://spark.apache.org/docs/latest/ml-pipeline.html#pipeline-components
https://spark.apache.org/docs/2.4.0/api/java/org/apache/spark/ml/feature/VectorAssembler.html

xgboost, Release 1.2.1

Dealing with missing values

XGBoost supports missing values by default (as desribed here). If given a SparseVector, XGBoost will treat any values
absent from the SparseVector as missing. You are also able to specify to XGBoost to treat a specific value in your
Dataset as if it was a missing value. By default XGBoost will treat NaN as the value representing missing.

Example of setting a missing value (e.g. -999) to the “missing” parameter in XGBoostClassifier:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map("eta" -> 0.1f,

"missing" -> -999,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

Note: Missing values with Spark’s VectorAssembler

If given a Dataset with enough features having a value of 0 Spark’s VectorAssembler transformer class will return a
SparseVector where the absent values are meant to indicate a value of 0. This conflicts with XGBoost’s default to
treat values absent from the SparseVector as missing. The model would effectively be treating 0 as missing but not
declaring that to be so which can lead to confusion when using the trained model on other platforms. To avoid this,
XGBoost will raise an exception if it receives a SparseVector and the “missing” parameter has not been explicitly set
to 0. To workaround this issue the user has three options:

1. Explicitly convert the Vector returned from VectorAssembler to a DenseVector to return the zeros to the dataset.
If doing this with missing values encoded as NaN, you will want to set setHandleInvalid = "keep" on
VectorAssembler in order to keep the NaN values in the dataset. You would then set the “missing” parameter to
whatever you want to be treated as missing. However this may cause a large amount of memory use if your dataset is
very sparse.

2. Before calling VectorAssembler you can transform the values you want to represent missing into an irregular value
that is not 0, NaN, or Null and set the “missing” parameter to 0. The irregular value should ideally be chosen to be
outside the range of values that your features have.

3. Do not use the VectorAssembler class and instead use a custom way of constructing a SparseVector
that allows for specifying sparsity to indicate a non-zero value. You can then set the “missing” parame-
ter to whatever sparsity indicates in your Dataset. If this approach is taken you can pass the parameter
"allow_non_zero_for_missing_value" -> true to bypass XGBoost’s assertion that “missing” must be
zero when given a SparseVector.

Option 1 is recommended if memory constraints are not an issue. Option 3 requires more work to get set up but is
guaranteed to give you correct results while option 2 will be quicker to set up but may be difficult to find a good
irregular value that does not conflict with your feature values.

Note: Using a non-default missing value when using other bindings of XGBoost.

When XGBoost is saved in native format only the booster itself is saved, the value of the missing parameter is not
saved alongside the model. Thus, if a non-default missing parameter is used to train the model in Spark the user should
take care to use the same missing parameter when using the saved model in another binding.

1.9. XGBoost JVM Package 151

https://xgboost.readthedocs.io/en/latest/faq.html#how-to-deal-with-missing-value

xgboost, Release 1.2.1

Training

XGBoost supports both regression and classification. While we use Iris dataset in this tutorial to show how we use
XGBoost/XGBoost4J-Spark to resolve a multi-classes classification problem, the usage in Regression is very similar
to classification.

To train a XGBoost model for classification, we need to claim a XGBoostClassifier first:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map("eta" -> 0.1f,

"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

The available parameters for training a XGBoost model can be found in here. In XGBoost4J-Spark, we support not
only the default set of parameters but also the camel-case variant of these parameters to keep consistent with Spark’s
MLLIB parameters.

Specifically, each parameter in this page has its equivalent form in XGBoost4J-Spark with camel case. For example, to
set max_depth for each tree, you can pass parameter just like what we did in the above code snippet (as max_depth
wrapped in a Map), or you can do it through setters in XGBoostClassifer:

val xgbClassifier = new XGBoostClassifier().
setFeaturesCol("features").
setLabelCol("classIndex")

xgbClassifier.setMaxDepth(2)

After we set XGBoostClassifier parameters and feature/label column, we can build a transformer, XGBoostClassifi-
cationModel by fitting XGBoostClassifier with the input DataFrame. This fit operation is essentially the training
process and the generated model can then be used in prediction.

val xgbClassificationModel = xgbClassifier.fit(xgbInput)

Early Stopping

Early stopping is a feature to prevent the unnecessary training iterations. By specifying
num_early_stopping_rounds or directly call setNumEarlyStoppingRounds over a XGBoost-
Classifier or XGBoostRegressor, we can define number of rounds if the evaluation metric going away from the best
iteration and early stop training iterations.

When it comes to custom eval metrics, in additional to num_early_stopping_rounds, you also need to de-
fine maximize_evaluation_metrics or call setMaximizeEvaluationMetrics to specify whether you
want to maximize or minimize the metrics in training. For built-in eval metrics, XGBoost4J-Spark will automatically
select the direction.

For example, we need to maximize the evaluation metrics (set maximize_evaluation_metrics with true), and
set num_early_stopping_rounds with 5. The evaluation metric of 10th iteration is the maximum one until
now. In the following iterations, if there is no evaluation metric greater than the 10th iteration’s (best one), the traning
would be early stopped at 15th iteration.

152 Chapter 1. Contents

xgboost, Release 1.2.1

Training with Evaluation Sets

You can also monitor the performance of the model during training with multiple evaluation datasets. By specify-
ing eval_sets or call setEvalSets over a XGBoostClassifier or XGBoostRegressor, you can pass in multiple
evaluation datasets typed as a Map from String to DataFrame.

Prediction

XGBoost4j-Spark supports two ways for model serving: batch prediction and single instance prediction.

Batch Prediction

When we get a model, either XGBoostClassificationModel or XGBoostRegressionModel, it takes a DataFrame, read
the column containing feature vectors, predict for each feature vector, and output a new DataFrame with the following
columns by default:

• XGBoostClassificationModel will output margins (rawPredictionCol), probabili-
ties(probabilityCol) and the eventual prediction labels (predictionCol) for each possible label.

• XGBoostRegressionModel will output prediction label(predictionCol).

Batch prediction expects the user to pass the testset in the form of a DataFrame. XGBoost4J-Spark starts a XGBoost
worker for each partition of DataFrame for parallel prediction and generates prediction results for the whole DataFrame
in a batch.

val xgbClassificationModel = xgbClassifier.fit(xgbInput)
val results = xgbClassificationModel.transform(testSet)

With the above code snippet, we get a result DataFrame, result containing margin, probability for each class and the
prediction for each instance

+-----------------+----------+--------------------+--------------------+----------+
| features|classIndex| rawPrediction| probability|prediction|
+-----------------+----------+--------------------+--------------------+----------+
[5.1,3.5,1.4,0.2]	0.0	[3.45569849014282...	[0.99579632282257...	0.0
[4.9,3.0,1.4,0.2]	0.0	[3.45569849014282...	[0.99618089199066...	0.0
[4.7,3.2,1.3,0.2]	0.0	[3.45569849014282...	[0.99643349647521...	0.0
[4.6,3.1,1.5,0.2]	0.0	[3.45569849014282...	[0.99636095762252...	0.0
[5.0,3.6,1.4,0.2]	0.0	[3.45569849014282...	[0.99579632282257...	0.0
[5.4,3.9,1.7,0.4]	0.0	[3.45569849014282...	[0.99428516626358...	0.0
[4.6,3.4,1.4,0.3]	0.0	[3.45569849014282...	[0.99643349647521...	0.0
[5.0,3.4,1.5,0.2]	0.0	[3.45569849014282...	[0.99579632282257...	0.0
[4.4,2.9,1.4,0.2]	0.0	[3.45569849014282...	[0.99618089199066...	0.0
[4.9,3.1,1.5,0.1]	0.0	[3.45569849014282...	[0.99636095762252...	0.0
[5.4,3.7,1.5,0.2]	0.0	[3.45569849014282...	[0.99428516626358...	0.0
[4.8,3.4,1.6,0.2]	0.0	[3.45569849014282...	[0.99643349647521...	0.0
[4.8,3.0,1.4,0.1]	0.0	[3.45569849014282...	[0.99618089199066...	0.0
[4.3,3.0,1.1,0.1]	0.0	[3.45569849014282...	[0.99618089199066...	0.0
[5.8,4.0,1.2,0.2]	0.0	[3.45569849014282...	[0.97809928655624...	0.0
[5.7,4.4,1.5,0.4]	0.0	[3.45569849014282...	[0.97809928655624...	0.0
[5.4,3.9,1.3,0.4]	0.0	[3.45569849014282...	[0.99428516626358...	0.0
[5.1,3.5,1.4,0.3]	0.0	[3.45569849014282...	[0.99579632282257...	0.0
[5.7,3.8,1.7,0.3]	0.0	[3.45569849014282...	[0.97809928655624...	0.0
[5.1,3.8,1.5,0.3]	0.0	[3.45569849014282...	[0.99579632282257...	0.0
+-----------------+----------+--------------------+--------------------+----------+

1.9. XGBoost JVM Package 153

xgboost, Release 1.2.1

Single instance prediction

XGBoostClassificationModel or XGBoostRegressionModel support make prediction on single instance as well. It
accepts a single Vector as feature, and output the prediction label.

However, the overhead of single-instance prediction is high due to the internal overhead of XGBoost, use it carefully!

val features = xgbInput.head().getAs[Vector]("features")
val result = xgbClassificationModel.predict(features)

Model Persistence

Model and pipeline persistence

A data scientist produces an ML model and hands it over to an engineering team for deployment in a production
environment. Reversely, a trained model may be used by data scientists, for example as a baseline, across the process
of data exploration. So it’s important to support model persistence to make the models available across usage scenarios
and programming languages.

XGBoost4j-Spark supports saving and loading XGBoostClassifier/XGBoostClassificationModel and XGBoostRegres-
sor/XGBoostRegressionModel. It also supports saving and loading a ML pipeline which includes these estimators and
models.

We can save the XGBoostClassificationModel to file system:

val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().save(xgbClassificationModelPath)

and then loading the model in another session:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel

val xgbClassificationModel2 = XGBoostClassificationModel.
→˓load(xgbClassificationModelPath)
xgbClassificationModel2.transform(xgbInput)

With regards to ML pipeline save and load, please refer the next section.

Interact with Other Bindings of XGBoost

After we train a model with XGBoost4j-Spark on massive dataset, sometimes we want to do model serving in single
machine or integrate it with other single node libraries for further processing. XGBoost4j-Spark supports export model
to local by:

val nativeModelPath = "/tmp/nativeModel"
xgbClassificationModel.nativeBooster.saveModel(nativeModelPath)

Then we can load this model with single node Python XGBoost:

import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
bst.load_model(nativeModelPath)

154 Chapter 1. Contents

xgboost, Release 1.2.1

Note: Using HDFS and S3 for exporting the models with nativeBooster.saveModel()

When interacting with other language bindings, XGBoost also supports saving-models-to and loading-models-from
file systems other than the local one. You can use HDFS and S3 by prefixing the path with hdfs:// and s3://
respectively. However, for this capability, you must do one of the following:

1. Build XGBoost4J-Spark with the steps described in here, but turning USE_HDFS (or USE_S3, etc. in the same
place) switch on. With this approach, you can reuse the above code example by replacing “nativeModelPath”
with a HDFS path.

• However, if you build with USE_HDFS, etc. you have to ensure that the involved shared object file, e.g.
libhdfs.so, is put in the LIBRARY_PATH of your cluster. To avoid the complicated cluster environment
configuration, choose the other option.

2. Use bindings of HDFS, S3, etc. to pass model files around. Here are the steps (taking HDFS as an example):

• Create a new file with

val outputStream = fs.create("hdfs_path")

where “fs” is an instance of org.apache.hadoop.fs.FileSystem class in Hadoop.

• Pass the returned OutputStream in the first step to nativeBooster.saveModel():

xgbClassificationModel.nativeBooster.saveModel(outputStream)

• Download file in other languages from HDFS and load with the pre-built (without the requirement of lib-
hdfs.so) version of XGBoost. (The function “download_from_hdfs” is a helper function to be implemented
by the user)

import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
local_path = download_from_hdfs("hdfs_path")
bst.load_model(local_path)

Note: Consistency issue between XGBoost4J-Spark and other bindings

There is a consistency issue between XGBoost4J-Spark and other language bindings of XGBoost.

When users use Spark to load training/test data in LIBSVM format with the following code snippet:

spark.read.format("libsvm").load("trainingset_libsvm")

Spark assumes that the dataset is using 1-based indexing (feature indices staring with 1). However, when you do
prediction with other bindings of XGBoost (e.g. Python API of XGBoost), XGBoost assumes that the dataset is using
0-based indexing (feature indices starting with 0) by default. It creates a pitfall for the users who train model with
Spark but predict with the dataset in the same format in other bindings of XGBoost. The solution is to transform the
dataset to 0-based indexing before you predict with, for example, Python API, or you append ?indexing_mode=1
to your file path when loading with DMatirx. For example in Python:

xgb.DMatrix('test.libsvm?indexing_mode=1')

1.9. XGBoost JVM Package 155

https://xgboost.readthedocs.io/en/latest/jvm/index.html#installation-from-source
https://github.com/dmlc/xgboost/blob/e939192978a0c152ad7b49b744630e99d54cffa8/jvm-packages/create_jni.py#L18
https://hadoop.apache.org/docs/stable/api/org/apache/hadoop/fs/FileSystem.html

xgboost, Release 1.2.1

Building a ML Pipeline with XGBoost4J-Spark

Basic ML Pipeline

Spark ML pipeline can combine multiple algorithms or functions into a single pipeline. It covers from feature ex-
traction, transformation, selection to model training and prediction. XGBoost4j-Spark makes it feasible to embed
XGBoost into such a pipeline seamlessly. The following example shows how to build such a pipeline consisting of
Spark MLlib feature transformer and XGBoostClassifier estimator.

We still use Iris dataset and the rawInput DataFrame. First we need to split the dataset into training and test dataset.

val Array(training, test) = rawInput.randomSplit(Array(0.8, 0.2), 123)

The we build the ML pipeline which includes 4 stages:

• Assemble all features into a single vector column.

• From string label to indexed double label.

• Use XGBoostClassifier to train classification model.

• Convert indexed double label back to original string label.

We have shown the first three steps in the earlier sections, and the last step is finished with a new transformer Index-
ToString:

val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("realLabel")
.setLabels(stringIndexer.labels)

We need to organize these steps as a Pipeline in Spark ML framework and evaluate the whole pipeline to get a
PipelineModel:

import org.apache.spark.ml.feature._
import org.apache.spark.ml.Pipeline

val pipeline = new Pipeline()
.setStages(Array(assembler, stringIndexer, booster, labelConverter))

val model = pipeline.fit(training)

After we get the PipelineModel, we can make prediction on the test dataset and evaluate the model accuracy.

import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

val prediction = model.transform(test)
val evaluator = new MulticlassClassificationEvaluator()
val accuracy = evaluator.evaluate(prediction)

156 Chapter 1. Contents

https://archive.ics.uci.edu/ml/datasets/iris
https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.ml.feature.IndexToString
https://spark.apache.org/docs/2.3.1/api/scala/index.html#org.apache.spark.ml.feature.IndexToString

xgboost, Release 1.2.1

Pipeline with Hyper-parameter Tunning

The most critical operation to maximize the power of XGBoost is to select the optimal parameters for the model.
Tuning parameters manually is a tedious and labor-consuming process. With the latest version of XGBoost4J-Spark,
we can utilize the Spark model selecting tool to automate this process.

The following example shows the code snippet utilizing CrossValidation and MulticlassClassificationEvaluator to
search the optimal combination of two XGBoost parameters, max_depth and eta. (See XGBoost Parameters.) The
model producing the maximum accuracy defined by MulticlassClassificationEvaluator is selected and used to generate
the prediction for the test set.

import org.apache.spark.ml.tuning._
import org.apache.spark.ml.PipelineModel
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel

val paramGrid = new ParamGridBuilder()
.addGrid(booster.maxDepth, Array(3, 8))
.addGrid(booster.eta, Array(0.2, 0.6))
.build()

val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(3)

val cvModel = cv.fit(training)

val bestModel = cvModel.bestModel.asInstanceOf[PipelineModel].stages(2)
.asInstanceOf[XGBoostClassificationModel]

bestModel.extractParamMap()

Run XGBoost4J-Spark in Production

XGBoost4J-Spark is one of the most important steps to bring XGBoost to production environment easier. In this
section, we introduce three key features to run XGBoost4J-Spark in production.

Parallel/Distributed Training

The massive size of training dataset is one of the most significant characteristics in production environment. To
ensure that training in XGBoost scales with the data size, XGBoost4J-Spark bridges the distributed/parallel processing
framework of Spark and the parallel/distributed training mechanism of XGBoost.

In XGBoost4J-Spark, each XGBoost worker is wrapped by a Spark task and the training dataset in Spark’s memory
space is fed to XGBoost workers in a transparent approach to the user.

In the code snippet where we build XGBoostClassifier, we set parameter num_workers (or numWorkers). This
parameter controls how many parallel workers we want to have when training a XGBoostClassificationModel.

Note: Regarding OpenMP optimization

By default, we allocate a core per each XGBoost worker. Therefore, the OpenMP optimization within each XGBoost
worker does not take effect and the parallelization of training is achieved by running multiple workers (i.e. Spark
tasks) at the same time.

If you do want OpenMP optimization, you have to

1.9. XGBoost JVM Package 157

xgboost, Release 1.2.1

1. set nthread to a value larger than 1 when creating XGBoostClassifier/XGBoostRegressor

2. set spark.task.cpus in Spark to the same value as nthread

Gang Scheduling

XGBoost uses AllReduce. algorithm to synchronize the stats, e.g. histogram values, of each worker during training.
Therefore XGBoost4J-Spark requires that all of nthread * numWorkers cores should be available before the
training runs.

In the production environment where many users share the same cluster, it’s hard to guarantee that your XGBoost4J-
Spark application can get all requested resources for every run. By default, the communication layer in XGBoost will
block the whole application when it requires more resources to be available. This process usually brings unnecessary
resource waste as it keeps the ready resources and try to claim more. Additionally, this usually happens silently and
does not bring the attention of users.

XGBoost4J-Spark allows the user to setup a timeout threshold for claiming resources from the cluster. If the applica-
tion cannot get enough resources within this time period, the application would fail instead of wasting resources for
hanging long. To enable this feature, you can set with XGBoostClassifier/XGBoostRegressor:

xgbClassifier.setTimeoutRequestWorkers(60000L)

or pass in timeout_request_workers in xgbParamMap when building XGBoostClassifier:

val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2,
"timeout_request_workers" -> 60000L)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

If XGBoost4J-Spark cannot get enough resources for running two XGBoost workers, the application would fail. Users
can have external mechanism to monitor the status of application and get notified for such case.

Checkpoint During Training

Transient failures are also commonly seen in production environment. To simplify the design of XGBoost, we stop
training if any of the distributed workers fail. However, if the training fails after having been through a long time, it
would be a great waste of resources.

We support creating checkpoint during training to facilitate more efficient recovery from failture. To enable this fea-
ture, you can set how many iterations we build each checkpoint with setCheckpointInterval and the location
of checkpoints with setCheckpointPath:

xgbClassifier.setCheckpointInterval(2)
xgbClassifier.setCheckpointPath("/checkpoint_path")

An equivalent way is to pass in parameters in XGBoostClassifier’s constructor:

158 Chapter 1. Contents

http://mpitutorial.com/tutorials/mpi-reduce-and-allreduce/

xgboost, Release 1.2.1

val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2,
"checkpoint_path" -> "/checkpoints_path",
"checkpoint_interval" -> 2)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

If the training failed during these 100 rounds, the next run of training would start by reading the latest checkpoint
file in /checkpoints_path and start from the iteration when the checkpoint was built until to next failure or the
specified 100 rounds.

XGBoost4J Java API

XGBoost4J Scala API

XGBoost4J-Spark Scala API

XGBoost4J-Flink Scala API

1.10 XGBoost.jl

See XGBoost.jl Project page.

1.11 XGBoost C Package

XGBoost implements a set of C API designed for various bindings, we maintain its stability and the CMake/make
build interface. See demo/c-api/README.md for an overview and related examples. Also one can generate
doxygen document by providing -DBUILD_C_DOC=ON as parameter to CMake during build, or simply look at
function comments in include/xgboost/c_api.h.

• C API documentation (latest master branch)

• C API documentation (last stable release)

1.12 XGBoost C++ API

Starting from 1.0 release, CMake will generate installation rules to export all C++ headers. But the c++ interface is
much closer to the internal of XGBoost than other language bindings. As a result it’s changing quite often and we
don’t maintain its stability. Along with the plugin system (see plugin/example in XGBoost’s source tree), users
can utilize some existing c++ headers for gaining more access to the internal of XGBoost.

• C++ interface documentation (latest master branch)

• C++ interface documentation (last stable release)

1.10. XGBoost.jl 159

https://github.com/dmlc/XGBoost.jl
https://xgboost.readthedocs.io/en/latest/dev/c__api_8h.html
https://xgboost.readthedocs.io/en/stable/dev/c__api_8h.html
https://xgboost.readthedocs.io/en/latest/dev/files.html
https://xgboost.readthedocs.io/en/stable/dev/files.html

xgboost, Release 1.2.1

1.13 XGBoost Command Line version

See XGBoost Command Line walkthrough.

1.14 Contribute to XGBoost

XGBoost has been developed by community members. Everyone is welcome to contribute. We value all forms of
contributions, including, but not limited to:

• Code reviews for pull requests

• Documentation and usage examples

• Community participation in forums and issues

• Code readability and developer guide

– We welcome contributions that add code comments to improve readability.

– We also welcome contributions to docs to explain the design choices of the XGBoost internals.

• Test cases to make the codebase more robust.

• Tutorials, blog posts, talks that promote the project.

Here are guidelines for contributing to various aspect of the XGBoost project:

1.14.1 XGBoost Community Guideline

XGBoost adopts the Apache style model and governs by merit. We believe that it is important to create an inclu-
sive community where everyone can use, contribute to, and influence the direction of the project. See CONTRIBU-
TORS.md for the current list of contributors.

General Development Process

Everyone in the community is welcomed to send patches, documents, and propose new directions to the project.
The key guideline here is to enable everyone in the community to get involved and participate the decision and de-
velopment. When major changes are proposed, an RFC should be sent to allow discussion by the community. We
encourage public discussion, archivable channels such as issues and discuss forum, so that everyone in the community
can participate and review the process later.

Code reviews are one of the key ways to ensure the quality of the code. High-quality code reviews prevent technical
debt for long-term and are crucial to the success of the project. A pull request needs to be reviewed before it gets
merged. A committer who has the expertise of the corresponding area would moderate the pull request and the merge
the code when it is ready. The corresponding committer could request multiple reviewers who are familiar with the
area of the code. We encourage contributors to request code reviews themselves and help review each other’s code –
remember everyone is volunteering their time to the community, high-quality code review itself costs as much as the
actual code contribution, you could get your code quickly reviewed if you do others the same favor.

The community should strive to reach a consensus on technical decisions through discussion. We expect commit-
ters and PMCs to moderate technical discussions in a diplomatic way, and provide suggestions with clear technical
reasoning when necessary.

160 Chapter 1. Contents

https://github.com/dmlc/xgboost/blob/master/demo/binary_classification/README.md
https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md
https://github.com/dmlc/xgboost/blob/master/CONTRIBUTORS.md

xgboost, Release 1.2.1

Committers

Committers are individuals who are granted the write access to the project. A committer is usually responsible for
a certain area or several areas of the code where they oversee the code review process. The area of contribution can
take all forms, including code contributions and code reviews, documents, education, and outreach. Committers are
essential for a high quality and healthy project. The community actively look for new committers from contributors.
Here is a list of useful traits that help the community to recognize potential committers:

• Sustained contribution to the project, demonstrated by discussion over RFCs, code reviews and proposals of
new features, and other development activities. Being familiar with, and being able to take ownership on one or
several areas of the project.

• Quality of contributions: High-quality, readable code contributions indicated by pull requests that can be merged
without a substantial code review. History of creating clean, maintainable code and including good test cases.
Informative code reviews to help other contributors that adhere to a good standard.

• Community involvement: active participation in the discussion forum, promote the projects via tutorials, talks
and outreach. We encourage committers to collaborate broadly, e.g. do code reviews and discuss designs with
community members that they do not interact physically.

The Project Management Committee(PMC) consists group of active committers that moderate the discussion, manage
the project release, and proposes new committer/PMC members. Potential candidates are usually proposed via an
internal discussion among PMCs, followed by a consensus approval, i.e. least 3 +1 votes, and no vetoes. Any veto
must be accompanied by reasoning. PMCs should serve the community by upholding the community practices and
guidelines XGBoost a better community for everyone. PMCs should strive to only nominate new candidates outside
of their own organization.

The PMC is in charge of the project’s continuous integration (CI) and testing infrastructure. Currently, we host our
own Jenkins server at https://xgboost-ci.net. The PMC shall appoint committer(s) to manage the CI infrastructure.
The PMC may accept 3rd-party donations and sponsorships that would defray the cost of the CI infrastructure. See
Donations.

Reviewers

Reviewers are individuals who actively contributed to the project and are willing to participate in the code review of
new contributions. We identify reviewers from active contributors. The committers should explicitly solicit reviews
from reviewers. High-quality code reviews prevent technical debt for long-term and are crucial to the success of the
project. A pull request to the project has to be reviewed by at least one reviewer in order to be merged.

1.14.2 Donations

Motivation

DMLC/XGBoost has grown from a research project incubated in academia to one of the most widely used gradient
boosting framework in production environment. On one side, with the growth of volume and variety of data in the
production environment, users are putting accordingly growing expectation to XGBoost in terms of more functions,
scalability and robustness. On the other side, as an open source project which develops in a fast pace, XGBoost has
been receiving contributions from many individuals and organizations around the world. Given the high expectation
from the users and the increasing channels of contribution to the project, delivering the high quality software presents
a challenge to the project maintainers.

A robust and efficient continuous integration (CI) infrastructure is one of the most critical solutions to address the
above challenge. A CI service will monitor an open-source repository and run a suite of integration tests for every
incoming contribution. This way, the CI ensures that every proposed change in the codebase is compatible with

1.14. Contribute to XGBoost 161

https://en.wikipedia.org/wiki/Continuous_integration
https://xgboost-ci.net

xgboost, Release 1.2.1

existing functionalities. Furthermore, XGBoost can enable more thorough tests with a powerful CI infrastructure to
cover cases which are closer to the production environment.

There are several CI services available free to open source projects, such as Travis CI and AppVeyor. The XGBoost
project already utilizes Travis and AppVeyor. However, the XGBoost project has needs that these free services do
not adequately address. In particular, the limited usage quota of resources such as CPU and memory leaves XGBoost
developers unable to bring “too-intensive” tests. In addition, they do not offer test machines with GPUs for testing
XGBoost-GPU code base which has been attracting more and more interest across many organizations. Consequently,
the XGBoost project self-hosts a cloud server with Jenkins software installed: https://xgboost-ci.net/.

The self-hosted Jenkins CI server has recurring operating expenses. It utilizes a leading cloud provider (AWS) to
accommodate variable workload. The master node serving the web interface is available 24/7, to accomodate contri-
butions from people around the globe. In addition, the master node launches slave nodes on demand, to run the test
suite on incoming contributions. To save cost, the slave nodes are terminated when they are no longer needed.

To help defray the hosting cost, the XGBoost project seeks donations from third parties.

Donations and Sponsorships

Donors may choose to make one-time donations or recurring donations on monthly or yearly basis. Donors who
commit to the Sponsor tier will have their logo displayed on the front page of the XGBoost project.

Fiscal host: Open Source Collective 501(c)(6)

The Project Management Committee (PMC) of the XGBoost project appointed Open Source Collective as their fiscal
host. The platform is a 501(c)(6) registered entity and will manage the funds on the behalf of the PMC so that PMC
members will not have to manage the funds directly. The platform currently hosts several well-known Javascript
frameworks such as Babel, Vue, and Webpack.

All expenses incurred for hosting CI will be submitted to the fiscal host with receipts. Only the expenses in the
following categories will be approved for reimbursement:

• Cloud exprenses for the Jenkins CI server (https://xgboost-ci.net)

• Cost of domain https://xgboost-ci.net

• Meetup.com account for XGBoost project

• Hosting cost of the User Forum (https://discuss.xgboost.ai)

Administration of Jenkins CI server

The PMC shall appoint committer(s) to administer the Jenkins CI server on their behalf. The current administrators
are as follows:

• Primary administrator: Hyunsu Cho

• Secondary administrator: Jiaming Yuan

The administrators shall make good-faith effort to keep the CI expenses under control. The expenses shall not exceed
the available funds. The administrators should post regular updates on CI expenses.

162 Chapter 1. Contents

https://xgboost-ci.net/
https://opencollective.com/opensource
https://xgboost-ci.net
https://xgboost-ci.net
https://discuss.xgboost.ai
https://github.com/hcho3
https://github.com/trivialfis

xgboost, Release 1.2.1

1.14.3 Coding Guideline

Contents

• C++ Coding Guideline

• Python Coding Guideline

• R Coding Guideline

– Code Style

– Rmarkdown Vignettes

– R package versioning

– Registering native routines in R

• Running Formatting Checks Locally

– Linter

– Clang-tidy

C++ Coding Guideline

• Follow Google style for C++, with two exceptions:

– Each line of text may contain up to 100 characters.

– The use of C++ exceptions is allowed.

• Use C++11 features such as smart pointers, braced initializers, lambda functions, and std::thread.

• Use Doxygen to document all the interface code.

• We have a series of automatic checks to ensure that all of our codebase complies with the Google style. Before
submitting your pull request, you are encouraged to run the style checks on your machine. See R Coding
Guideline.

Python Coding Guideline

• Follow PEP 8: Style Guide for Python Code. We use PyLint to automatically enforce PEP 8 style across our
Python codebase. Before submitting your pull request, you are encouraged to run PyLint on your machine. See
R Coding Guideline.

• Docstrings should be in NumPy docstring format.

1.14. Contribute to XGBoost 163

https://google.github.io/styleguide/cppguide.html
https://www.python.org/dev/peps/pep-0008/
https://numpydoc.readthedocs.io/en/latest/format.html

xgboost, Release 1.2.1

R Coding Guideline

Code Style

• We follow Google’s C++ Style guide for C++ code.

– This is mainly to be consistent with the rest of the project.

– Another reason is we will be able to check style automatically with a linter.

• You can check the style of the code by typing the following command at root folder.

make rcpplint

• When needed, you can disable the linter warning of certain line with // NOLINT(*) comments.

• We use roxygen for documenting the R package.

Rmarkdown Vignettes

Rmarkdown vignettes are placed in R-package/vignettes. These Rmarkdown files are not compiled. We host the
compiled version on doc/R-package.

The following steps are followed to add a new Rmarkdown vignettes:

• Add the original rmarkdown to R-package/vignettes.

• Modify doc/R-package/Makefile to add the markdown files to be build.

• Clone the dmlc/web-data repo to folder doc.

• Now type the following command on doc/R-package:

make the-markdown-to-make.md

• This will generate the markdown, as well as the figures in doc/web-data/xgboost/knitr.

• Modify the doc/R-package/index.md to point to the generated markdown.

• Add the generated figure to the dmlc/web-data repo.

– If you already cloned the repo to doc, this means git add

• Create PR for both the markdown and dmlc/web-data.

• You can also build the document locally by typing the following command at the doc directory:

make html

The reason we do this is to avoid exploded repo size due to generated images.

164 Chapter 1. Contents

https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html
https://github.com/dmlc/xgboost/tree/master/R-package/vignettes
https://github.com/dmlc/xgboost/tree/master/doc/R-package
https://github.com/dmlc/web-data

xgboost, Release 1.2.1

R package versioning

See XGBoost Release Policy.

Registering native routines in R

According to R extension manual, it is good practice to register native routines and to disable symbol search. When
any changes or additions are made to the C++ interface of the R package, please make corresponding changes in
src/init.c as well.

Running Formatting Checks Locally

Once you submit a pull request to dmlc/xgboost, we perform two automatic checks to enforce coding style conventions.
To expedite the code review process, you are encouraged to run the checks locally on your machine prior to submitting
your pull request.

Linter

We use pylint and cpplint to enforce style convention and find potential errors. Linting is especially useful for Python,
as we can catch many errors that would have otherwise occured at run-time.

To run this check locally, run the following command from the top level source tree:

cd /path/to/xgboost/
make lint

This command requires the Python packages pylint and cpplint.

Clang-tidy

Clang-tidy is an advance linter for C++ code, made by the LLVM team. We use it to conform our C++ codebase to
modern C++ practices and conventions.

To run this check locally, run the following command from the top level source tree:

cd /path/to/xgboost/
python3 tests/ci_build/tidy.py

Also, the script accepts two optional integer arguments, namely --cpp and --cuda. By default they are both set to
1, meaning that both C++ and CUDA code will be checked. If the CUDA toolkit is not installed on your machine,
you’ll encounter an error. To exclude CUDA source from linting, use:

cd /path/to/xgboost/
python3 tests/ci_build/tidy.py --cuda=0

Similarly, if you want to exclude C++ source from linting:

cd /path/to/xgboost/
python3 tests/ci_build/tidy.py --cpp=0

1.14. Contribute to XGBoost 165

https://cran.r-project.org/doc/manuals/r-release/R-exts.html#Registering-native-routines
https://github.com/dmlc/xgboost
https://github.com/PyCQA/pylint
https://github.com/cpplint/cpplint
https://clang.llvm.org/extra/clang-tidy/

xgboost, Release 1.2.1

1.14.4 Adding and running tests

A high-quality suite of tests is crucial in ensuring correctness and robustness of the codebase. Here, we provide
instructions how to run unit tests, and also how to add a new one.

Contents

• Adding a new unit test

– Python package: pytest

– C++: Google Test

– JVM packages: JUnit / scalatest

– R package: testthat

• Running Unit Tests Locally

– R package

– JVM packages

– Python package: pytest

– C++: Google Test

• Sanitizers: Detect memory errors and data races

– How to build XGBoost with sanitizers

– How to use sanitizers with CUDA support

Adding a new unit test

Python package: pytest

Add your test under the directory tests/python/ or tests/python-gpu/ (if you are testing GPU code). Refer to the PyTest
tutorial to learn how to write tests for Python code.

You may try running your test by following instructions in this section.

C++: Google Test

Add your test under the directory tests/cpp/. Refer to this excellent tutorial on using Google Test.

You may try running your test by following instructions in this section. Note. Google Test version 1.8.1 or later is
required.

166 Chapter 1. Contents

https://github.com/dmlc/xgboost/tree/master/tests/python
https://github.com/dmlc/xgboost/tree/master/tests/python-gpu
https://docs.pytest.org/en/latest/getting-started.html
https://docs.pytest.org/en/latest/getting-started.html
https://github.com/dmlc/xgboost/tree/master/tests/cpp
https://developer.ibm.com/articles/au-googletestingframework/

xgboost, Release 1.2.1

JVM packages: JUnit / scalatest

The JVM packages for XGBoost (XGBoost4J / XGBoost4J-Spark) use the Maven Standard Directory Layout. Specif-
ically, the tests for the JVM packages are located in the following locations:

• jvm-packages/xgboost4j/src/test/

• jvm-packages/xgboost4j-spark/src/test/

To write a test for Java code, see JUnit 5 tutorial. To write a test for Scala, see Scalatest tutorial.

You may try running your test by following instructions in this section.

R package: testthat

Add your test under the directory R-package/tests/testthat. Refer to this excellent tutorial on testthat.

You may try running your test by following instructions in this section.

Running Unit Tests Locally

R package

Run

make Rcheck

at the root of the project directory.

JVM packages

As part of the building process, tests are run:

mvn package

Python package: pytest

To run Python unit tests, first install pytest package:

pip3 install pytest

Then compile XGBoost according to instructions in Building the Shared Library. Finally, invoke pytest at the project
root directory:

Tell Python where to find XGBoost module
export PYTHONPATH=./python-package
pytest -v -s --fulltrace tests/python

In addition, to test CUDA code, run:

Tell Python where to find XGBoost module
export PYTHONPATH=./python-package
pytest -v -s --fulltrace tests/python-gpu

1.14. Contribute to XGBoost 167

https://maven.apache.org/guides/introduction/introduction-to-the-standard-directory-layout.html
https://github.com/dmlc/xgboost/tree/master/jvm-packages/xgboost4j/src/test
https://github.com/dmlc/xgboost/tree/master/jvm-packages/xgboost4j-spark/src/test
https://junit.org/junit5/docs/current/user-guide/
http://www.scalatest.org/user_guide/writing_your_first_test
https://github.com/dmlc/xgboost/tree/master/R-package/tests/testthat
https://kbroman.org/pkg_primer/pages/tests.html
https://docs.pytest.org/en/latest/contents.html

xgboost, Release 1.2.1

(For this step, you should have compiled XGBoost with CUDA enabled.)

C++: Google Test

To build and run C++ unit tests enable tests while running CMake:

mkdir build
cd build
cmake -DGOOGLE_TEST=ON -DUSE_DMLC_GTEST=ON ..
make
make test

To enable tests for CUDA code, add -DUSE_CUDA=ON and -DUSE_NCCL=ON (CUDA toolkit required):

mkdir build
cd build
cmake -DGOOGLE_TEST=ON -DUSE_DMLC_GTEST=ON -DUSE_CUDA=ON -DUSE_NCCL=ON ..
make
make test

One can also run all unit test using ctest tool which provides higher flexibility. For example:

ctest --verbose

Sanitizers: Detect memory errors and data races

By default, sanitizers are bundled in GCC and Clang/LLVM. One can enable sanitizers with GCC >= 4.8 or LLVM >=
3.1, But some distributions might package sanitizers separately. Here is a list of supported sanitizers with correspond-
ing library names:

• Address sanitizer: libasan

• Leak sanitizer: liblsan

• Thread sanitizer: libtsan

Memory sanitizer is exclusive to LLVM, hence not supported in XGBoost.

How to build XGBoost with sanitizers

One can build XGBoost with sanitizer support by specifying -DUSE_SANITIZER=ON. By default, address sanitizer
and leak sanitizer are used when you turn the USE_SANITIZER flag on. You can always change the default by provid-
ing a semicolon separated list of sanitizers to ENABLED_SANITIZERS. Note that thread sanitizer is not compatible
with the other two sanitizers.

cmake -DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak" /path/to/xgboost

By default, CMake will search regular system paths for sanitizers, you can also supply a specified SANITIZER_PATH.

cmake -DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak" \
-DSANITIZER_PATH=/path/to/sanitizers /path/to/xgboost

168 Chapter 1. Contents

xgboost, Release 1.2.1

How to use sanitizers with CUDA support

Runing XGBoost on CUDA with address sanitizer (asan) will raise memory error. To use asan with CUDA correctly,
you need to configure asan via ASAN_OPTIONS environment variable:

ASAN_OPTIONS=protect_shadow_gap=0 ${BUILD_DIR}/testxgboost

For details, please consult official documentation for sanitizers.

1.14.5 Documentation and Examples

Contents

• Documents

• Examples

Documents

• Documentation is built using Sphinx.

• Each document is written in reStructuredText.

• You can build document locally to see the effect, by running

make html

inside the doc/ directory.

Examples

• Use cases and examples will be in demo.

• We are super excited to hear about your story, if you have blogposts, tutorials code solutions using XGBoost,
please tell us and we will add a link in the example pages.

1.14.6 Git Workflow Howtos

Contents

• How to resolve conflict with master

• How to combine multiple commits into one

• What is the consequence of force push

1.14. Contribute to XGBoost 169

https://github.com/google/sanitizers/wiki
http://www.sphinx-doc.org/en/master/
http://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://github.com/dmlc/xgboost/tree/master/demo

xgboost, Release 1.2.1

How to resolve conflict with master

• First rebase to most recent master

The first two steps can be skipped after you do it once.
git remote add upstream https://github.com/dmlc/xgboost
git fetch upstream
git rebase upstream/master

• The git may show some conflicts it cannot merge, say conflicted.py.

– Manually modify the file to resolve the conflict.

– After you resolved the conflict, mark it as resolved by

git add conflicted.py

• Then you can continue rebase by

git rebase --continue

• Finally push to your fork, you may need to force push here.

git push --force

How to combine multiple commits into one

Sometimes we want to combine multiple commits, especially when later commits are only fixes to previous ones, to
create a PR with set of meaningful commits. You can do it by following steps.

• Before doing so, configure the default editor of git if you haven’t done so before.

git config core.editor the-editor-you-like

• Assume we want to merge last 3 commits, type the following commands

git rebase -i HEAD~3

• It will pop up an text editor. Set the first commit as pick, and change later ones to squash.

• After you saved the file, it will pop up another text editor to ask you modify the combined commit message.

• Push the changes to your fork, you need to force push.

git push --force

What is the consequence of force push

The previous two tips requires force push, this is because we altered the path of the commits. It is fine to force push to
your own fork, as long as the commits changed are only yours.

170 Chapter 1. Contents

xgboost, Release 1.2.1

1.14.7 XGBoost Release Policy

Versioning Policy

Starting from XGBoost 1.0.0, each XGBoost release will be versioned as [MAJOR].[FEATURE].[MAINTENANCE]

• MAJOR: We gurantee the API compatibility across releases with the same major version number. We expect to
have a 1+ years development period for a new MAJOR release version.

• FEATURE: We ship new features, improvements and bug fixes through feature releases. The cycle length of a
feature is decided by the size of feature roadmap. The roadmap is decided right after the previous release.

• MAINTENANCE: Maintenance version only contains bug fixes. This type of release only occurs when we
found significant correctness and/or performance bugs and barrier for users to upgrade to a new version of
XGBoost smoothly.

1.14. Contribute to XGBoost 171

xgboost, Release 1.2.1

172 Chapter 1. Contents

PYTHON MODULE INDEX

x
xgboost.core, 77
xgboost.dask, 119
xgboost.plotting, 116
xgboost.sklearn, 89
xgboost.training, 86

173

xgboost, Release 1.2.1

174 Python Module Index

INDEX

A
apply() (xgboost.XGBClassifier method), 95
apply() (xgboost.XGBRanker method), 101
apply() (xgboost.XGBRegressor method), 90
apply() (xgboost.XGBRFClassifier method), 112
apply() (xgboost.XGBRFRegressor method), 106
attr() (xgboost.Booster method), 81
attributes() (xgboost.Booster method), 81

B
boost() (xgboost.Booster method), 81
Booster (class in xgboost), 81

C
coef_() (xgboost.XGBClassifier property), 95
coef_() (xgboost.XGBRanker property), 101
coef_() (xgboost.XGBRegressor property), 90
coef_() (xgboost.XGBRFClassifier property), 112
coef_() (xgboost.XGBRFRegressor property), 107
copy() (xgboost.Booster method), 81
cv() (in module xgboost), 87

D
DaskDMatrix() (in module xgboost.dask), 119
DaskXGBClassifier() (in module xgboost.dask),

120
DaskXGBRegressor() (in module xgboost.dask), 122
DeviceQuantileDMatrix (class in xgboost), 80
DMatrix (class in xgboost), 77
dump_model() (xgboost.Booster method), 81

E
early_stop() (in module xgboost.callback), 118
eval() (xgboost.Booster method), 82
eval_set() (xgboost.Booster method), 82
evals_result() (xgboost.XGBClassifier method),

96
evals_result() (xgboost.XGBRanker method), 101
evals_result() (xgboost.XGBRegressor method),

91
evals_result() (xgboost.XGBRFClassifier

method), 112

evals_result() (xgboost.XGBRFRegressor
method), 107

F
feature_importances_() (xgboost.XGBClassifier

property), 96
feature_importances_() (xgboost.XGBRanker

property), 102
feature_importances_() (xg-

boost.XGBRegressor property), 91
feature_importances_() (xg-

boost.XGBRFClassifier property), 112
feature_importances_() (xg-

boost.XGBRFRegressor property), 107
feature_names() (xgboost.DMatrix property), 78
feature_types() (xgboost.DMatrix property), 78
fit() (xgboost.XGBClassifier method), 96
fit() (xgboost.XGBRanker method), 102
fit() (xgboost.XGBRegressor method), 91
fit() (xgboost.XGBRFClassifier method), 113
fit() (xgboost.XGBRFRegressor method), 108

G
get_base_margin() (xgboost.DMatrix method), 78
get_booster() (xgboost.XGBClassifier method), 97
get_booster() (xgboost.XGBRanker method), 103
get_booster() (xgboost.XGBRegressor method), 92
get_booster() (xgboost.XGBRFClassifier method),

114
get_booster() (xgboost.XGBRFRegressor method),

108
get_dump() (xgboost.Booster method), 82
get_float_info() (xgboost.DMatrix method), 78
get_fscore() (xgboost.Booster method), 82
get_label() (xgboost.DMatrix method), 78
get_num_boosting_rounds() (xg-

boost.XGBClassifier method), 97
get_num_boosting_rounds() (xg-

boost.XGBRanker method), 103
get_num_boosting_rounds() (xg-

boost.XGBRegressor method), 92

175

xgboost, Release 1.2.1

get_num_boosting_rounds() (xg-
boost.XGBRFClassifier method), 114

get_num_boosting_rounds() (xg-
boost.XGBRFRegressor method), 109

get_params() (xgboost.XGBClassifier method), 97
get_params() (xgboost.XGBRanker method), 104
get_params() (xgboost.XGBRegressor method), 92
get_params() (xgboost.XGBRFClassifier method),

114
get_params() (xgboost.XGBRFRegressor method),

109
get_score() (xgboost.Booster method), 82
get_split_value_histogram() (xg-

boost.Booster method), 83
get_uint_info() (xgboost.DMatrix method), 78
get_weight() (xgboost.DMatrix method), 78
get_xgb_params() (xgboost.XGBClassifier

method), 97
get_xgb_params() (xgboost.XGBRanker method),

104
get_xgb_params() (xgboost.XGBRegressor

method), 92
get_xgb_params() (xgboost.XGBRFClassifier

method), 114
get_xgb_params() (xgboost.XGBRFRegressor

method), 109

I
inplace_predict() (xgboost.Booster method), 83
intercept_() (xgboost.XGBClassifier property), 97
intercept_() (xgboost.XGBRanker property), 104
intercept_() (xgboost.XGBRegressor property), 92
intercept_() (xgboost.XGBRFClassifier property),

114
intercept_() (xgboost.XGBRFRegressor property),

109

L
load_config() (xgboost.Booster method), 84
load_model() (xgboost.Booster method), 84
load_model() (xgboost.XGBClassifier method), 98
load_model() (xgboost.XGBRanker method), 104
load_model() (xgboost.XGBRegressor method), 93
load_model() (xgboost.XGBRFClassifier method),

114
load_model() (xgboost.XGBRFRegressor method),

109
load_rabit_checkpoint() (xgboost.Booster

method), 84

M
module

xgboost.core, 77
xgboost.dask, 119

xgboost.plotting, 116
xgboost.sklearn, 89
xgboost.training, 86

N
num_col() (xgboost.DMatrix method), 78
num_row() (xgboost.DMatrix method), 78

P
plot_importance() (in module xgboost), 116
plot_tree() (in module xgboost), 116
predict() (in module xgboost.dask), 120
predict() (xgboost.Booster method), 84
predict() (xgboost.XGBClassifier method), 98
predict() (xgboost.XGBRanker method), 104
predict() (xgboost.XGBRegressor method), 93
predict() (xgboost.XGBRFClassifier method), 114
predict() (xgboost.XGBRFRegressor method), 109
predict_proba() (xgboost.XGBClassifier method),

98
predict_proba() (xgboost.XGBRFClassifier

method), 115
print_evaluation() (in module xgboost.callback),

118

R
record_evaluation() (in module xg-

boost.callback), 118
reset_learning_rate() (in module xg-

boost.callback), 118

S
save_binary() (xgboost.DMatrix method), 79
save_config() (xgboost.Booster method), 85
save_model() (xgboost.Booster method), 85
save_model() (xgboost.XGBClassifier method), 99
save_model() (xgboost.XGBRanker method), 104
save_model() (xgboost.XGBRegressor method), 93
save_model() (xgboost.XGBRFClassifier method),

115
save_model() (xgboost.XGBRFRegressor method),

110
save_rabit_checkpoint() (xgboost.Booster

method), 85
save_raw() (xgboost.Booster method), 86
set_attr() (xgboost.Booster method), 86
set_base_margin() (xgboost.DMatrix method), 79
set_float_info() (xgboost.DMatrix method), 79
set_float_info_npy2d() (xgboost.DMatrix

method), 79
set_group() (xgboost.DMatrix method), 79
set_info() (xgboost.DMatrix method), 79
set_label() (xgboost.DMatrix method), 79
set_param() (xgboost.Booster method), 86

176 Index

xgboost, Release 1.2.1

set_params() (xgboost.XGBClassifier method), 99
set_params() (xgboost.XGBRanker method), 105
set_params() (xgboost.XGBRegressor method), 94
set_params() (xgboost.XGBRFClassifier method),

115
set_params() (xgboost.XGBRFRegressor method),

110
set_uint_info() (xgboost.DMatrix method), 79
set_weight() (xgboost.DMatrix method), 79
slice() (xgboost.DMatrix method), 80

T
to_graphviz() (in module xgboost), 117
train() (in module xgboost), 86
train() (in module xgboost.dask), 119
trees_to_dataframe() (xgboost.Booster method),

86

U
update() (xgboost.Booster method), 86

X
XGBClassifier (class in xgboost), 94
xgboost.core

module, 77
xgboost.dask

module, 119
xgboost.plotting

module, 116
xgboost.sklearn

module, 89
xgboost.training

module, 86
XGBRanker (class in xgboost), 99
XGBRegressor (class in xgboost), 89
XGBRFClassifier (class in xgboost), 110
XGBRFRegressor (class in xgboost), 105

Index 177

	Contents
	Installation Guide
	Get Started with XGBoost
	XGBoost Tutorials
	Frequently Asked Questions
	XGBoost GPU Support
	XGBoost Parameters
	XGBoost Python Package
	XGBoost R Package
	XGBoost JVM Package
	XGBoost.jl
	XGBoost C Package
	XGBoost C++ API
	XGBoost Command Line version
	Contribute to XGBoost

	Python Module Index
	Index

