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XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable.
It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree
boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same
code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

CONTENTS 1
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1.1 Installation Guide

XGBoost provides binary packages for some language bindings. The binary packages support the GPU algorithm
(gpu_hist) on machines with NVIDIA GPUs. Please note that training with multiple GPUs is only supported for
Linux platform. See XGBoost GPU Support. Also we have both stable releases and nightly builds, see below for how
to install them. For building from source, visit this page.

Contents

• Installation Guide

– Stable Release

∗ Python

· Conda

∗ R

∗ JVM

– Nightly Build

∗ Python

∗ R

∗ JVM

1.1.1 Stable Release

Python

Pre-built binary are uploaded to PyPI (Python Package Index) for each release. Supported platforms are Linux (x86_64,
aarch64), Windows (x86_64) and MacOS (x86_64, Apple Silicon).

pip install xgboost

You might need to run the command with --user flag or use virtualenv if you run into permission errors. Python
pre-built binary capability for each platform:

3
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Platform GPU Multi-Node-Multi-GPU
Linux x86_64 ✓✓✓ ✓✓✓
Linux aarch64
MacOS x86_64
MacOS Apple Silicon
Windows ✓✓✓

Conda

You may use the Conda packaging manager to install XGBoost:

conda install -c conda-forge py-xgboost

Conda should be able to detect the existence of a GPU on your machine and install the correct variant of XGBoost. If
you run into issues, try indicating the variant explicitly:

# CPU only
conda install -c conda-forge py-xgboost-cpu
# Use NVIDIA GPU
conda install -c conda-forge py-xgboost-gpu

Visit the Miniconda website to obtain Conda.

Note: py-xgboost-gpu not available on Windows.

The py-xgboost-gpu is currently not available on Windows. If you are using Windows, please use pip to install
XGBoost with GPU support.

R

• From CRAN:

install.packages("xgboost")

Note: Using all CPU cores (threads) on Mac OSX

If you are using Mac OSX, you should first install OpenMP library (libomp) by running

brew install libomp

and then run install.packages("xgboost"). Without OpenMP, XGBoost will only use a single CPU core,
leading to suboptimal training speed.

• We also provide experimental pre-built binary with GPU support. With this binary, you will be able to use the
GPU algorithm without building XGBoost from the source. Download the binary package from the Releases
page. The file name will be of the form xgboost_r_gpu_[os]_[version].tar.gz, where [os] is either
linux or win64. (We build the binaries for 64-bit Linux and Windows.) Then install XGBoost by running:

4 Chapter 1. Contents
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# Install dependencies
R -q -e "install.packages(c('data.table', 'jsonlite'))"
# Install XGBoost
R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz

JVM

• XGBoost4j/XGBoost4j-Spark

Listing 1: Maven

<properties>
...
<!-- Specify Scala version in package name -->
<scala.binary.version>2.12</scala.binary.version>

</properties>

<dependencies>
...
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
<version>latest_version_num</version>

</dependency>
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark_${scala.binary.version}</artifactId>
<version>latest_version_num</version>

</dependency>
</dependencies>

Listing 2: sbt

libraryDependencies ++= Seq(
"ml.dmlc" %% "xgboost4j" % "latest_version_num",
"ml.dmlc" %% "xgboost4j-spark" % "latest_version_num"

)

• XGBoost4j-GPU/XGBoost4j-Spark-GPU

Listing 3: Maven

<properties>
...
<!-- Specify Scala version in package name -->
<scala.binary.version>2.12</scala.binary.version>

</properties>

<dependencies>
...
<dependency>

<groupId>ml.dmlc</groupId>
(continues on next page)
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(continued from previous page)

<artifactId>xgboost4j-gpu_${scala.binary.version}</artifactId>
<version>latest_version_num</version>

</dependency>
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark-gpu_${scala.binary.version}</artifactId>
<version>latest_version_num</version>

</dependency>
</dependencies>

Listing 4: sbt

libraryDependencies ++= Seq(
"ml.dmlc" %% "xgboost4j-gpu" % "latest_version_num",
"ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num"

)

This will check out the latest stable version from the Maven Central.

For the latest release version number, please check release page.

To enable the GPU algorithm (tree_method='gpu_hist'), use artifacts xgboost4j-gpu_2.12 and
xgboost4j-spark-gpu_2.12 instead (note the gpu suffix).

Note: Windows not supported in the JVM package

Currently, XGBoost4J-Spark does not support Windows platform, as the distributed training algorithm is inoperational
for Windows. Please use Linux or MacOS.

1.1.2 Nightly Build

Python

Nightly builds are available. You can go to this page, find the wheel with the commit ID you want and install it with
pip:

pip install <url to the wheel>

The capability of Python pre-built wheel is the same as stable release.

R

Other than standard CRAN installation, we also provide experimental pre-built binary on with GPU support. You can
go to this page, Find the commit ID you want to install and then locate the file xgboost_r_gpu_[os]_[commit].
tar.gz, where [os] is either linux or win64. (We build the binaries for 64-bit Linux and Windows.) Download it
and run the following commands:

# Install dependencies
R -q -e "install.packages(c('data.table', 'jsonlite', 'remotes'))"
# Install XGBoost
R CMD INSTALL ./xgboost_r_gpu_linux.tar.gz

6 Chapter 1. Contents
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JVM

• XGBoost4j/XGBoost4j-Spark

Listing 5: Maven

<repository>
<id>XGBoost4J Snapshot Repo</id>
<name>XGBoost4J Snapshot Repo</name>
<url>https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/snapshot/</url>

</repository>

Listing 6: sbt

resolvers += "XGBoost4J Snapshot Repo" at "https://s3-us-west-2.amazonaws.com/xgboost-
→˓maven-repo/snapshot/"

Then add XGBoost4J as a dependency:

Listing 7: maven

<properties>
...
<!-- Specify Scala version in package name -->
<scala.binary.version>2.12</scala.binary.version>

</properties>

<dependencies>
...
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j_${scala.binary.version}</artifactId>
<version>latest_version_num-SNAPSHOT</version>

</dependency>
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark_${scala.binary.version}</artifactId>
<version>latest_version_num-SNAPSHOT</version>

</dependency>
</dependencies>

Listing 8: sbt

libraryDependencies ++= Seq(
"ml.dmlc" %% "xgboost4j" % "latest_version_num-SNAPSHOT",
"ml.dmlc" %% "xgboost4j-spark" % "latest_version_num-SNAPSHOT"

)

• XGBoost4j-GPU/XGBoost4j-Spark-GPU

Listing 9: maven

<properties>
...

(continues on next page)
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(continued from previous page)

<!-- Specify Scala version in package name -->
<scala.binary.version>2.12</scala.binary.version>

</properties>

<dependencies>
...
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-gpu_${scala.binary.version}</artifactId>
<version>latest_version_num-SNAPSHOT</version>

</dependency>
<dependency>

<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j-spark-gpu_${scala.binary.version}</artifactId>
<version>latest_version_num-SNAPSHOT</version>

</dependency>
</dependencies>

Listing 10: sbt

libraryDependencies ++= Seq(
"ml.dmlc" %% "xgboost4j-gpu" % "latest_version_num-SNAPSHOT",
"ml.dmlc" %% "xgboost4j-spark-gpu" % "latest_version_num-SNAPSHOT"

)

Look up the version field in pom.xml to get the correct version number.

The SNAPSHOT JARs are hosted by the XGBoost project. Every commit in the master branch will automatically
trigger generation of a new SNAPSHOT JAR. You can control how often Maven should upgrade your SNAPSHOT
installation by specifying updatePolicy. See here for details.

You can browse the file listing of the Maven repository at https://s3-us-west-2.amazonaws.com/xgboost-maven-repo/
list.html.

To enable the GPU algorithm (tree_method='gpu_hist'), use artifacts xgboost4j-gpu_2.12 and
xgboost4j-spark-gpu_2.12 instead (note the gpu suffix).

1.2 Building From Source

This page gives instructions on how to build and install XGBoost from the source code on various systems. If the
instructions do not work for you, please feel free to ask questions at the user forum.

Note: Pre-built binary is available: now with GPU support

Consider installing XGBoost from a pre-built binary, to avoid the trouble of building XGBoost from the source. Check-
out Installation Guide.

Contents

• Building From Source
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– Obtaining the Source Code

– Building the Shared Library

∗ Building on Linux and other UNIX-like systems

∗ Building on MacOS

∗ Building on Windows

∗ Building with GPU support

– Building Python Package from Source

∗ Building Python Package with Default Toolchains

∗ Building Python Package for Windows with MinGW-w64 (Advanced)

– Building R Package From Source

∗ Installing the development version (Linux / Mac OSX)

∗ Installing the development version with Visual Studio (Windows)

∗ Building R package with GPU support

– Building JVM Packages

∗ Enabling OpenMP for Mac OS

∗ Building with GPU support

– Building the Documentation

– Makefiles

1.2.1 Obtaining the Source Code

To obtain the development repository of XGBoost, one needs to use git.

Note: Use of Git submodules

XGBoost uses Git submodules to manage dependencies. So when you clone the repo, remember to specify
--recursive option:

git clone --recursive https://github.com/dmlc/xgboost

For windows users who use github tools, you can open the git shell and type the following command:

git submodule init
git submodule update

1.2. Building From Source 9



xgboost, Release 1.7.6

1.2.2 Building the Shared Library

This section describes the procedure to build the shared library and CLI interface independently. For building language
specific package, see corresponding sections in this document.

• On Linux and other UNIX-like systems, the target library is libxgboost.so

• On MacOS, the target library is libxgboost.dylib

• On Windows the target library is xgboost.dll

This shared library is used by different language bindings (with some additions depending on the binding you choose).
The minimal building requirement is

• A recent C++ compiler supporting C++11 (g++-5.0 or higher)

• CMake 3.14 or higher.

For a list of CMake options like GPU support, see #-- Options in CMakeLists.txt on top level of source tree.

Building on Linux and other UNIX-like systems

After obtaining the source code, one builds XGBoost by running CMake:

cd xgboost
mkdir build
cd build
cmake ..
make -j$(nproc)

Building on MacOS

Obtain libomp from Homebrew:

brew install libomp

Rest is the same as building on Linux.

Building on Windows

XGBoost support compilation with Microsoft Visual Studio and MinGW. To build with Visual Studio, we will need
CMake. Make sure to install a recent version of CMake. Then run the following from the root of the XGBoost directory:

mkdir build
cd build
cmake .. -G"Visual Studio 14 2015 Win64"
# for VS15: cmake .. -G"Visual Studio 15 2017" -A x64
# for VS16: cmake .. -G"Visual Studio 16 2019" -A x64
cmake --build . --config Release

This specifies an out of source build using the Visual Studio 64 bit generator. (Change the -G option appropriately if
you have a different version of Visual Studio installed.)

After the build process successfully ends, you will find a xgboost.dll library file inside ./lib/ folder. Some notes
on using MinGW is added in Building Python Package for Windows with MinGW-w64 (Advanced).

10 Chapter 1. Contents
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Building with GPU support

XGBoost can be built with GPU support for both Linux and Windows using CMake. See Building R package with
GPU support for special instructions for R.

An up-to-date version of the CUDA toolkit is required.

Note: Checking your compiler version

CUDA is really picky about supported compilers, a table for the compatible compilers for the latests CUDA version on
Linux can be seen here.

Some distros package a compatible gcc version with CUDA. If you run into compiler errors with nvcc, try specifying
the correct compiler with -DCMAKE_CXX_COMPILER=/path/to/correct/g++ -DCMAKE_C_COMPILER=/path/to/
correct/gcc. On Arch Linux, for example, both binaries can be found under /opt/cuda/bin/.

From the command line on Linux starting from the XGBoost directory:

mkdir build
cd build
# For CUDA toolkit >= 11.4, `BUILD_WITH_CUDA_CUB` is required.
cmake .. -DUSE_CUDA=ON -DBUILD_WITH_CUDA_CUB=ON
make -j4

Note: Specifying compute capability

To speed up compilation, the compute version specific to your GPU could be passed to cmake as, e.g.,
-DGPU_COMPUTE_VER=50. A quick explanation and numbers for some architectures can be found in this page.

Note: Faster distributed GPU training with NCCL

By default, distributed GPU training is enabled and uses Rabit for communication. For faster training, set the op-
tion USE_NCCL=ON. Faster distributed GPU training depends on NCCL2, available at this link. Since NCCL2 is only
available for Linux machines, faster distributed GPU training is available only for Linux.

mkdir build
cd build
cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DNCCL_ROOT=/path/to/nccl2
make -j4

On Windows, run CMake as follows:

mkdir build
cd build
cmake .. -G"Visual Studio 14 2015 Win64" -DUSE_CUDA=ON

(Change the -G option appropriately if you have a different version of Visual Studio installed.)

The above cmake configuration run will create an xgboost.sln solution file in the build directory. Build this solution
in release mode as a x64 build, either from Visual studio or from command line:

cmake --build . --target xgboost --config Release

1.2. Building From Source 11
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To speed up compilation, run multiple jobs in parallel by appending option -- /MP.

1.2.3 Building Python Package from Source

The Python package is located at python-package/.

Building Python Package with Default Toolchains

There are several ways to build and install the package from source:

1. Use Python setuptools directly

The XGBoost Python package supports most of the setuptools commands, here is a list of tested commands:

python setup.py install # Install the XGBoost to your current Python␣
→˓environment.
python setup.py build # Build the Python package.
python setup.py build_ext # Build only the C++ core.
python setup.py sdist # Create a source distribution
python setup.py bdist # Create a binary distribution
python setup.py bdist_wheel # Create a binary distribution with wheel format

Running python setup.py installwill compile XGBoost using default CMake flags. For passing ad-
ditional compilation options, append the flags to the command. For example, to enable CUDA acceleration
and NCCL (distributed GPU) support:

python setup.py install --use-cuda --use-nccl

Please refer to setup.py for a complete list of available options. Some other options used for develop-
ment are only available for using CMake directly. See next section on how to use CMake with setuptools
manually.

You can install the created distribution packages using pip. For example, after running sdist setuptools
command, a tar ball similar to xgboost-1.0.0.tar.gz will be created under the dist directory. Then
you can install it by invoking the following command under dist directory:

# under python-package directory
cd dist
pip install ./xgboost-1.0.0.tar.gz

For details about these commands, please refer to the official document of setuptools, or just Google “how
to install Python package from source”. XGBoost Python package follows the general convention. Setup-
tools is usually available with your Python distribution, if not you can install it via system command. For
example on Debian or Ubuntu:

sudo apt-get install python-setuptools

For cleaning up the directory after running above commands, python setup.py clean is not sufficient.
After copying out the build result, simply running git clean -xdf under python-package is an effi-
cient way to remove generated cache files. If you find weird behaviors in Python build or running linter, it
might be caused by those cached files.

For using develop command (editable installation), see next section.

12 Chapter 1. Contents
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python setup.py develop # Create a editable installation.
pip install -e . # Same as above, but carried out by pip.

2. Build C++ core with CMake first

This is mostly for C++ developers who don’t want to go through the hooks in Python setuptools. You can
build C++ library directly using CMake as described in above sections. After compilation, a shared object
(or called dynamic linked library, jargon depending on your platform) will appear in XGBoost’s source tree
under lib/ directory. On Linux distributions it’s lib/libxgboost.so. From there all Python setuptools
commands will reuse that shared object instead of compiling it again. This is especially convenient if you
are using the editable installation, where the installed package is simply a link to the source tree. We can
perform rapid testing during development. Here is a simple bash script does that:

# Under xgboost source tree.
mkdir build
cd build
cmake ..
make -j$(nproc)
cd ../python-package
pip install -e . # or equivalently python setup.py develop

3. Use libxgboost.so on system path.

This is for distributing xgboost in a language independent manner, where libxgboost.so is separately
packaged with Python package. Assuming libxgboost.so is already presented in system library path, which
can be queried via:

import sys
import os
os.path.join(sys.prefix, 'lib')

Then one only needs to provide an user option when installing Python package to reuse the shared object
in system path:

cd xgboost/python-package
python setup.py install --use-system-libxgboost

Building Python Package for Windows with MinGW-w64 (Advanced)

Windows versions of Python are built with Microsoft Visual Studio. Usually Python binary modules are built with the
same compiler the interpreter is built with. However, you may not be able to use Visual Studio, for following reasons:

1. VS is proprietary and commercial software. Microsoft provides a freeware “Community” edition, but its licens-
ing terms impose restrictions as to where and how it can be used.

2. Visual Studio contains telemetry, as documented in Microsoft Visual Studio Licensing Terms. Running software
with telemetry may be against the policy of your organization.

So you may want to build XGBoost with GCC own your own risk. This presents some difficulties because MSVC
uses Microsoft runtime and MinGW-w64 uses own runtime, and the runtimes have different incompatible memory
allocators. But in fact this setup is usable if you know how to deal with it. Here is some experience.

1. The Python interpreter will crash on exit if XGBoost was used. This is usually not a big issue.

2. -O3 is OK.

3. -mtune=native is also OK.

1.2. Building From Source 13
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4. Don’t use -march=native gcc flag. Using it causes the Python interpreter to crash if the DLL was actually used.

5. You may need to provide the lib with the runtime libs. If mingw32/bin is not in PATH, build a wheel (python
setup.py bdist_wheel), open it with an archiver and put the needed dlls to the directory where xgboost.dll
is situated. Then you can install the wheel with pip.

1.2.4 Building R Package From Source

By default, the package installed by running install.packages is built from source. Here we list some other options
for installing development version.

Installing the development version (Linux / Mac OSX)

Make sure you have installed git and a recent C++ compiler supporting C++11 (See above sections for requirements of
building C++ core).

Due to the use of git-submodules, devtools::install_github can no longer be used to install the latest version of
R package. Thus, one has to run git to check out the code first, see Obtaining the Source Code on how to initialize the
git repository for XGBoost. The simplest way to install the R package after obtaining the source code is:

cd R-package
R CMD INSTALL .

But if you want to use CMake build for better performance (which has the logic for detecting available CPU instructions)
or greater flexibility around compile flags, the above snippet can be replaced by:

mkdir build
cd build
cmake .. -DR_LIB=ON
make -j$(nproc)
make install

Installing the development version with Visual Studio (Windows)

On Windows, CMake with Visual C++ Build Tools (or Visual Studio) can be used to build the R package.

While not required, this build can be faster if you install the R package processx with install.
packages("processx").

Note: Setting correct PATH environment variable on Windows

If you are using Windows, make sure to include the right directories in the PATH environment variable.

• If you are using R 4.x with RTools 4.0: - C:\rtools40\usr\bin - C:\rtools40\mingw64\bin

• If you are using R 3.x with RTools 3.x:

– C:\Rtools\bin

– C:\Rtools\mingw_64\bin

Open the Command Prompt and navigate to the XGBoost directory, and then run the following commands. Make sure
to specify the correct R version.

14 Chapter 1. Contents
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cd C:\path\to\xgboost
mkdir build
cd build
cmake .. -G"Visual Studio 16 2019" -A x64 -DR_LIB=ON -DR_VERSION=4.0.0
cmake --build . --target install --config Release

Building R package with GPU support

The procedure and requirements are similar as in Building with GPU support, so make sure to read it first.

On Linux, starting from the XGBoost directory type:

mkdir build
cd build
cmake .. -DUSE_CUDA=ON -DR_LIB=ON
make install -j$(nproc)

When default target is used, an R package shared library would be built in the build area. The install target, in
addition, assembles the package files with this shared library under build/R-package and runs R CMD INSTALL.

On Windows, CMake with Visual Studio has to be used to build an R package with GPU support. Rtools must also be
installed.

Note: Setting correct PATH environment variable on Windows

If you are using Windows, make sure to include the right directories in the PATH environment variable.

• If you are using R 4.x with RTools 4.0:

– C:\rtools40\usr\bin

– C:\rtools40\mingw64\bin

• If you are using R 3.x with RTools 3.x:

– C:\Rtools\bin

– C:\Rtools\mingw_64\bin

Open the Command Prompt and navigate to the XGBoost directory, and then run the following commands. Make sure
to specify the correct R version.

cd C:\path\to\xgboost
mkdir build
cd build
cmake .. -G"Visual Studio 16 2019" -A x64 -DUSE_CUDA=ON -DR_LIB=ON -DR_VERSION=4.0.0
cmake --build . --target install --config Release

If CMake can’t find your R during the configuration step, you might provide the location of R to CMake like this:
-DLIBR_HOME="C:\Program Files\R\R-4.0.0".

If on Windows you get a “permission denied” error when trying to write to . . . Program Files/R/. . . during the package
installation, create a .Rprofile file in your personal home directory (if you don’t already have one in there), and add
a line to it which specifies the location of your R packages user library, like the following:

.libPaths( unique(c("C:/Users/USERNAME/Documents/R/win-library/3.4", .libPaths())))
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You might find the exact location by running .libPaths() in R GUI or RStudio.

1.2.5 Building JVM Packages

Building XGBoost4J using Maven requires Maven 3 or newer, Java 7+ and CMake 3.13+ for compiling Java code as
well as the Java Native Interface (JNI) bindings.

Before you install XGBoost4J, you need to define environment variable JAVA_HOME as your JDK directory to ensure
that your compiler can find jni.h correctly, since XGBoost4J relies on JNI to implement the interaction between the
JVM and native libraries.

After your JAVA_HOME is defined correctly, it is as simple as run mvn package under jvm-packages directory to install
XGBoost4J. You can also skip the tests by running mvn -DskipTests=true package, if you are sure about the
correctness of your local setup.

To publish the artifacts to your local maven repository, run

mvn install

Or, if you would like to skip tests, run

mvn -DskipTests install

This command will publish the xgboost binaries, the compiled java classes as well as the java sources to your local
repository. Then you can use XGBoost4J in your Java projects by including the following dependency in pom.xml:

<dependency>
<groupId>ml.dmlc</groupId>
<artifactId>xgboost4j</artifactId>
<version>latest_source_version_num</version>

</dependency>

For sbt, please add the repository and dependency in build.sbt as following:

resolvers += "Local Maven Repository" at "file://"+Path.userHome.absolutePath+"/.m2/
→˓repository"

"ml.dmlc" % "xgboost4j" % "latest_source_version_num"

If you want to use XGBoost4J-Spark, replace xgboost4j with xgboost4j-spark.

Note: XGBoost4J-Spark requires Apache Spark 2.3+

XGBoost4J-Spark now requires Apache Spark 2.3+. Latest versions of XGBoost4J-Spark uses facilities of
org.apache.spark.ml.param.shared extensively to provide for a tight integration with Spark MLLIB framework, and
these facilities are not fully available on earlier versions of Spark.

Also, make sure to install Spark directly from Apache website. Upstream XGBoost is not guaranteed to work
with third-party distributions of Spark, such as Cloudera Spark. Consult appropriate third parties to obtain their
distribution of XGBoost.
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Enabling OpenMP for Mac OS

If you are on Mac OS and using a compiler that supports OpenMP, you need to go to the file xgboost/jvm-packages/
create_jni.py and comment out the line

CONFIG["USE_OPENMP"] = "OFF"

in order to get the benefit of multi-threading.

Building with GPU support

If you want to build XGBoost4J that supports distributed GPU training, run

mvn -Duse.cuda=ON install

1.2.6 Building the Documentation

XGBoost uses Sphinx for documentation. To build it locally, you need a installed XGBoost with all its dependencies
along with:

• System dependencies

– git

– graphviz

• Python dependencies

Checkout the requirements.txt file under doc/

Under xgboost/doc directory, run make <format> with <format> replaced by the format you want. For a list of
supported formats, run make help under the same directory.

1.2.7 Makefiles

It’s only used for creating shorthands for running linters, performing packaging tasks etc. So the remaining makefiles
are legacy.

1.3 Get Started with XGBoost

This is a quick start tutorial showing snippets for you to quickly try out XGBoost on the demo dataset on a binary
classification task.
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1.3.1 Links to Other Helpful Resources

• See Installation Guide on how to install XGBoost.

• See Text Input Format on using text format for specifying training/testing data.

• See Tutorials for tips and tutorials.

• See Learning to use XGBoost by Examples for more code examples.

1.3.2 Python

from xgboost import XGBClassifier
# read data
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
data = load_iris()
X_train, X_test, y_train, y_test = train_test_split(data['data'], data['target'], test_
→˓size=.2)
# create model instance
bst = XGBClassifier(n_estimators=2, max_depth=2, learning_rate=1, objective=
→˓'binary:logistic')
# fit model
bst.fit(X_train, y_train)
# make predictions
preds = bst.predict(X_test)

1.3.3 R

# load data
data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test
# fit model
bst <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1, nrounds =␣
→˓2,

nthread = 2, objective = "binary:logistic")
# predict
pred <- predict(bst, test$data)

1.3.4 Julia

using XGBoost
# read data
train_X, train_Y = readlibsvm("demo/data/agaricus.txt.train", (6513, 126))
test_X, test_Y = readlibsvm("demo/data/agaricus.txt.test", (1611, 126))
# fit model
num_round = 2
bst = xgboost(train_X, num_round, label=train_Y, eta=1, max_depth=2)

(continues on next page)
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(continued from previous page)

# predict
pred = predict(bst, test_X)

1.3.5 Scala

import ml.dmlc.xgboost4j.scala.DMatrix
import ml.dmlc.xgboost4j.scala.XGBoost

object XGBoostScalaExample {
def main(args: Array[String]) {
// read trainining data, available at xgboost/demo/data
val trainData =
new DMatrix("/path/to/agaricus.txt.train")

// define parameters
val paramMap = List(
"eta" -> 0.1,
"max_depth" -> 2,
"objective" -> "binary:logistic").toMap

// number of iterations
val round = 2
// train the model
val model = XGBoost.train(trainData, paramMap, round)
// run prediction
val predTrain = model.predict(trainData)
// save model to the file.
model.saveModel("/local/path/to/model")

}
}

1.4 XGBoost Tutorials

This section contains official tutorials inside XGBoost package. See Awesome XGBoost for more resources.

1.4.1 Introduction to Boosted Trees

XGBoost stands for “Extreme Gradient Boosting”, where the term “Gradient Boosting” originates from the paper
Greedy Function Approximation: A Gradient Boosting Machine, by Friedman.

The gradient boosted trees has been around for a while, and there are a lot of materials on the topic. This tutorial will
explain boosted trees in a self-contained and principled way using the elements of supervised learning. We think this
explanation is cleaner, more formal, and motivates the model formulation used in XGBoost.
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Elements of Supervised Learning

XGBoost is used for supervised learning problems, where we use the training data (with multiple features) 𝑥𝑖 to predict
a target variable 𝑦𝑖. Before we learn about trees specifically, let us start by reviewing the basic elements in supervised
learning.

Model and Parameters

The model in supervised learning usually refers to the mathematical structure of by which the prediction 𝑦𝑖 is made
from the input 𝑥𝑖. A common example is a linear model, where the prediction is given as 𝑦𝑖 =

∑︀
𝑗 𝜃𝑗𝑥𝑖𝑗 , a linear

combination of weighted input features. The prediction value can have different interpretations, depending on the task,
i.e., regression or classification. For example, it can be logistic transformed to get the probability of positive class in
logistic regression, and it can also be used as a ranking score when we want to rank the outputs.

The parameters are the undetermined part that we need to learn from data. In linear regression problems, the param-
eters are the coefficients 𝜃. Usually we will use 𝜃 to denote the parameters (there are many parameters in a model, our
definition here is sloppy).

Objective Function: Training Loss + Regularization

With judicious choices for 𝑦𝑖, we may express a variety of tasks, such as regression, classification, and ranking. The
task of training the model amounts to finding the best parameters 𝜃 that best fit the training data 𝑥𝑖 and labels 𝑦𝑖. In
order to train the model, we need to define the objective function to measure how well the model fit the training data.

A salient characteristic of objective functions is that they consist of two parts: training loss and regularization term:

obj(𝜃) = 𝐿(𝜃) + Ω(𝜃)

where 𝐿 is the training loss function, and Ω is the regularization term. The training loss measures how predictive our
model is with respect to the training data. A common choice of 𝐿 is the mean squared error, which is given by

𝐿(𝜃) =
∑︁
𝑖

(𝑦𝑖 − 𝑦𝑖)
2

Another commonly used loss function is logistic loss, to be used for logistic regression:

𝐿(𝜃) =
∑︁
𝑖

[𝑦𝑖 ln(1 + 𝑒−𝑦𝑖) + (1− 𝑦𝑖) ln(1 + 𝑒𝑦𝑖)]

The regularization term is what people usually forget to add. The regularization term controls the complexity of the
model, which helps us to avoid overfitting. This sounds a bit abstract, so let us consider the following problem in the
following picture. You are asked to fit visually a step function given the input data points on the upper left corner of
the image. Which solution among the three do you think is the best fit?
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The correct answer is marked in red. Please consider if this visually seems a reasonable fit to you. The general principle
is we want both a simple and predictive model. The tradeoff between the two is also referred as bias-variance tradeoff
in machine learning.

Why introduce the general principle?

The elements introduced above form the basic elements of supervised learning, and they are natural building blocks
of machine learning toolkits. For example, you should be able to describe the differences and commonalities between
gradient boosted trees and random forests. Understanding the process in a formalized way also helps us to understand
the objective that we are learning and the reason behind the heuristics such as pruning and smoothing.
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Decision Tree Ensembles

Now that we have introduced the elements of supervised learning, let us get started with real trees. To begin with, let
us first learn about the model choice of XGBoost: decision tree ensembles. The tree ensemble model consists of a
set of classification and regression trees (CART). Here’s a simple example of a CART that classifies whether someone
will like a hypothetical computer game X.

We classify the members of a family into different leaves, and assign them the score on the corresponding leaf. A
CART is a bit different from decision trees, in which the leaf only contains decision values. In CART, a real score is
associated with each of the leaves, which gives us richer interpretations that go beyond classification. This also allows
for a principled, unified approach to optimization, as we will see in a later part of this tutorial.

Usually, a single tree is not strong enough to be used in practice. What is actually used is the ensemble model, which
sums the prediction of multiple trees together.

Here is an example of a tree ensemble of two trees. The prediction scores of each individual tree are summed up to
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get the final score. If you look at the example, an important fact is that the two trees try to complement each other.
Mathematically, we can write our model in the form

𝑦𝑖 =

𝐾∑︁
𝑘=1

𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ ℱ

where 𝐾 is the number of trees, 𝑓𝑘 is a function in the functional space ℱ , and ℱ is the set of all possible CARTs. The
objective function to be optimized is given by

obj(𝜃) =
𝑛∑︁
𝑖

𝑙(𝑦𝑖, 𝑦𝑖) +

𝐾∑︁
𝑘=1

𝜔(𝑓𝑘)

where 𝜔(𝑓𝑘) is the complexity of the tree 𝑓𝑘, defined in detail later.

Now here comes a trick question: what is the model used in random forests? Tree ensembles! So random forests and
boosted trees are really the same models; the difference arises from how we train them. This means that, if you write
a predictive service for tree ensembles, you only need to write one and it should work for both random forests and
gradient boosted trees. (See Treelite for an actual example.) One example of why elements of supervised learning
rock.

Tree Boosting

Now that we introduced the model, let us turn to training: How should we learn the trees? The answer is, as is always
for all supervised learning models: define an objective function and optimize it!

Let the following be the objective function (remember it always needs to contain training loss and regularization):

obj =
𝑛∑︁

𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡)
𝑖 ) +

𝑡∑︁
𝑖=1

𝜔(𝑓𝑖)

Additive Training

The first question we want to ask: what are the parameters of trees? You can find that what we need to learn are those
functions 𝑓𝑖, each containing the structure of the tree and the leaf scores. Learning tree structure is much harder than
traditional optimization problem where you can simply take the gradient. It is intractable to learn all the trees at once.
Instead, we use an additive strategy: fix what we have learned, and add one new tree at a time. We write the prediction
value at step 𝑡 as 𝑦(𝑡)𝑖 . Then we have

𝑦
(0)
𝑖 = 0

𝑦
(1)
𝑖 = 𝑓1(𝑥𝑖) = 𝑦

(0)
𝑖 + 𝑓1(𝑥𝑖)

𝑦
(2)
𝑖 = 𝑓1(𝑥𝑖) + 𝑓2(𝑥𝑖) = 𝑦

(1)
𝑖 + 𝑓2(𝑥𝑖)

. . .

𝑦
(𝑡)
𝑖 =

𝑡∑︁
𝑘=1

𝑓𝑘(𝑥𝑖) = 𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)

It remains to ask: which tree do we want at each step? A natural thing is to add the one that optimizes our objective.

obj(𝑡) =
𝑛∑︁

𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡)
𝑖 ) +

𝑡∑︁
𝑖=1

𝜔(𝑓𝑖)

=

𝑛∑︁
𝑖=1

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)) + 𝜔(𝑓𝑡) + constant
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If we consider using mean squared error (MSE) as our loss function, the objective becomes

obj(𝑡) =
𝑛∑︁

𝑖=1

(𝑦𝑖 − (𝑦
(𝑡−1)
𝑖 + 𝑓𝑡(𝑥𝑖)))

2 +

𝑡∑︁
𝑖=1

𝜔(𝑓𝑖)

=

𝑛∑︁
𝑖=1

[2(𝑦
(𝑡−1)
𝑖 − 𝑦𝑖)𝑓𝑡(𝑥𝑖) + 𝑓𝑡(𝑥𝑖)

2] + 𝜔(𝑓𝑡) + constant

The form of MSE is friendly, with a first order term (usually called the residual) and a quadratic term. For other losses
of interest (for example, logistic loss), it is not so easy to get such a nice form. So in the general case, we take the Taylor
expansion of the loss function up to the second order:

obj(𝑡) =
𝑛∑︁

𝑖=1

[𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 ) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓

2
𝑡 (𝑥𝑖)] + 𝜔(𝑓𝑡) + constant

where the 𝑔𝑖 and ℎ𝑖 are defined as

𝑔𝑖 = 𝜕
𝑦
(𝑡−1)
𝑖

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 )

ℎ𝑖 = 𝜕2

𝑦
(𝑡−1)
𝑖

𝑙(𝑦𝑖, 𝑦
(𝑡−1)
𝑖 )

After we remove all the constants, the specific objective at step 𝑡 becomes

𝑛∑︁
𝑖=1

[𝑔𝑖𝑓𝑡(𝑥𝑖) +
1

2
ℎ𝑖𝑓

2
𝑡 (𝑥𝑖)] + 𝜔(𝑓𝑡)

This becomes our optimization goal for the new tree. One important advantage of this definition is that the value of the
objective function only depends on 𝑔𝑖 and ℎ𝑖. This is how XGBoost supports custom loss functions. We can optimize
every loss function, including logistic regression and pairwise ranking, using exactly the same solver that takes 𝑔𝑖 and
ℎ𝑖 as input!

Model Complexity

We have introduced the training step, but wait, there is one important thing, the regularization term! We need to
define the complexity of the tree 𝜔(𝑓). In order to do so, let us first refine the definition of the tree 𝑓(𝑥) as

𝑓𝑡(𝑥) = 𝑤𝑞(𝑥), 𝑤 ∈ 𝑅𝑇 , 𝑞 : 𝑅𝑑 → {1, 2, · · · , 𝑇}.

Here 𝑤 is the vector of scores on leaves, 𝑞 is a function assigning each data point to the corresponding leaf, and 𝑇 is
the number of leaves. In XGBoost, we define the complexity as

𝜔(𝑓) = 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤2
𝑗

Of course, there is more than one way to define the complexity, but this one works well in practice. The regularization
is one part most tree packages treat less carefully, or simply ignore. This was because the traditional treatment of
tree learning only emphasized improving impurity, while the complexity control was left to heuristics. By defining it
formally, we can get a better idea of what we are learning and obtain models that perform well in the wild.
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The Structure Score

Here is the magical part of the derivation. After re-formulating the tree model, we can write the objective value with
the 𝑡-th tree as:

obj(𝑡) ≈
𝑛∑︁

𝑖=1

[𝑔𝑖𝑤𝑞(𝑥𝑖) +
1

2
ℎ𝑖𝑤

2
𝑞(𝑥𝑖)

] + 𝛾𝑇 +
1

2
𝜆

𝑇∑︁
𝑗=1

𝑤2
𝑗

=

𝑇∑︁
𝑗=1

[(
∑︁
𝑖∈𝐼𝑗

𝑔𝑖)𝑤𝑗 +
1

2
(
∑︁
𝑖∈𝐼𝑗

ℎ𝑖 + 𝜆)𝑤2
𝑗 ] + 𝛾𝑇

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is the set of indices of data points assigned to the 𝑗-th leaf. Notice that in the second line
we have changed the index of the summation because all the data points on the same leaf get the same score. We could
further compress the expression by defining 𝐺𝑗 =

∑︀
𝑖∈𝐼𝑗

𝑔𝑖 and 𝐻𝑗 =
∑︀

𝑖∈𝐼𝑗
ℎ𝑖:

obj(𝑡) =
𝑇∑︁

𝑗=1

[𝐺𝑗𝑤𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝑤2

𝑗 ] + 𝛾𝑇

In this equation, 𝑤𝑗 are independent with respect to each other, the form 𝐺𝑗𝑤𝑗 +
1
2 (𝐻𝑗 + 𝜆)𝑤2

𝑗 is quadratic and the
best 𝑤𝑗 for a given structure 𝑞(𝑥) and the best objective reduction we can get is:

𝑤*
𝑗 = − 𝐺𝑗

𝐻𝑗 + 𝜆

obj* = −1

2

𝑇∑︁
𝑗=1

𝐺2
𝑗

𝐻𝑗 + 𝜆
+ 𝛾𝑇

The last equation measures how good a tree structure 𝑞(𝑥) is.

If all this sounds a bit complicated, let’s take a look at the picture, and see how the scores can be calculated. Basically,
for a given tree structure, we push the statistics 𝑔𝑖 and ℎ𝑖 to the leaves they belong to, sum the statistics together, and
use the formula to calculate how good the tree is. This score is like the impurity measure in a decision tree, except that
it also takes the model complexity into account.

1.4. XGBoost Tutorials 25



xgboost, Release 1.7.6

Learn the tree structure

Now that we have a way to measure how good a tree is, ideally we would enumerate all possible trees and pick the best
one. In practice this is intractable, so we will try to optimize one level of the tree at a time. Specifically we try to split
a leaf into two leaves, and the score it gains is

𝐺𝑎𝑖𝑛 =
1

2

[︂
𝐺2

𝐿

𝐻𝐿 + 𝜆
+

𝐺2
𝑅

𝐻𝑅 + 𝜆
− (𝐺𝐿 +𝐺𝑅)

2

𝐻𝐿 +𝐻𝑅 + 𝜆

]︂
− 𝛾

This formula can be decomposed as 1) the score on the new left leaf 2) the score on the new right leaf 3) The score on
the original leaf 4) regularization on the additional leaf. We can see an important fact here: if the gain is smaller than
𝛾, we would do better not to add that branch. This is exactly the pruning techniques in tree based models! By using
the principles of supervised learning, we can naturally come up with the reason these techniques work :)

For real valued data, we usually want to search for an optimal split. To efficiently do so, we place all the instances in
sorted order, like the following picture.

A left to right scan is sufficient to calculate the structure score of all possible split solutions, and we can find the best
split efficiently.

Note: Limitation of additive tree learning

Since it is intractable to enumerate all possible tree structures, we add one split at a time. This approach works well
most of the time, but there are some edge cases that fail due to this approach. For those edge cases, training results in a
degenerate model because we consider only one feature dimension at a time. See Can Gradient Boosting Learn Simple
Arithmetic? for an example.

Final words on XGBoost

Now that you understand what boosted trees are, you may ask, where is the introduction for XGBoost? XGBoost is
exactly a tool motivated by the formal principle introduced in this tutorial! More importantly, it is developed with both
deep consideration in terms of systems optimization and principles in machine learning. The goal of this library is
to push the extreme of the computation limits of machines to provide a scalable, portable and accurate library. Make
sure you try it out, and most importantly, contribute your piece of wisdom (code, examples, tutorials) to the community!
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1.4.2 Introduction to Model IO

In XGBoost 1.0.0, we introduced support of using JSON for saving/loading XGBoost models and related hyper-
parameters for training, aiming to replace the old binary internal format with an open format that can be easily reused.
Later in XGBoost 1.6.0, additional support for Universal Binary JSON is added as an optimization for more efficient
model IO. They have the same document structure with different representations, and we will refer them collectively as
the JSON format. This tutorial aims to share some basic insights into the JSON serialisation method used in XGBoost.
Without explicitly mentioned, the following sections assume you are using the one of the 2 outputs formats, which can
be enabled by providing the file name with .json (or .ubj for binary JSON) as file extension when saving/loading
model: booster.save_model('model.json'). More details below.

Before we get started, XGBoost is a gradient boosting library with focus on tree model, which means inside XGBoost,
there are 2 distinct parts:

1. The model consisting of trees and

2. Hyperparameters and configurations used for building the model.

If you come from Deep Learning community, then it should be clear to you that there are differences between the neural
network structures composed of weights with fixed tensor operations, and the optimizers (like RMSprop) used to train
them.

So when one calls booster.save_model (xgb.save in R), XGBoost saves the trees, some model parameters like
number of input columns in trained trees, and the objective function, which combined to represent the concept of
“model” in XGBoost. As for why are we saving the objective as part of model, that’s because objective controls
transformation of global bias (called base_score in XGBoost). Users can share this model with others for prediction,
evaluation or continue the training with a different set of hyper-parameters etc.

However, this is not the end of story. There are cases where we need to save something more than just the model itself.
For example, in distributed training, XGBoost performs checkpointing operation. Or for some reasons, your favorite
distributed computing framework decide to copy the model from one worker to another and continue the training in
there. In such cases, the serialisation output is required to contain enough information to continue previous training
without user providing any parameters again. We consider such scenario as memory snapshot (or memory based
serialisation method) and distinguish it with normal model IO operation. Currently, memory snapshot is used in the
following places:

• Python package: when the Booster object is pickled with the built-in pickle module.

• R package: when the xgb.Booster object is persisted with the built-in functions saveRDS or save.

• JVM packages: when the Booster object is serialized with the built-in functions saveModel.

Other language bindings are still working in progress.

Note: The old binary format doesn’t distinguish difference between model and raw memory serialisation format, it’s a
mix of everything, which is part of the reason why we want to replace it with a more robust serialisation method. JVM
Package has its own memory based serialisation methods.

To enable JSON format support for model IO (saving only the trees and objective), provide a filename with .json or
.ubj as file extension, the latter is the extension for Universal Binary JSON

Listing 11: Python

bst.save_model('model_file_name.json')
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Listing 12: R

xgb.save(bst, 'model_file_name.json')

Listing 13: Scala

val format = "json" // or val format = "ubj"
model.write.option("format", format).save("model_directory_path")

Note: Only load models from JSON files that were produced by XGBoost. Attempting to load JSON files that were
produced by an external source may lead to undefined behaviors and crashes.

While for memory snapshot, UBJSON is the default starting with xgboost 1.6.

A note on backward compatibility of models and memory snapshots

We guarantee backward compatibility for models but not for memory snapshots.

Models (trees and objective) use a stable representation, so that models produced in earlier versions of XGBoost are
accessible in later versions of XGBoost. If you’d like to store or archive your model for long-term storage, use
save_model (Python) and xgb.save (R).

On the other hand, memory snapshot (serialisation) captures many stuff internal to XGBoost, and its format is not stable
and is subject to frequent changes. Therefore, memory snapshot is suitable for checkpointing only, where you persist
the complete snapshot of the training configurations so that you can recover robustly from possible failures and resume
the training process. Loading memory snapshot generated by an earlier version of XGBoost may result in errors or
undefined behaviors. If a model is persisted with pickle.dump (Python) or saveRDS (R), then the model may not
be accessible in later versions of XGBoost.

Custom objective and metric

XGBoost accepts user provided objective and metric functions as an extension. These functions are not saved in model
file as they are language dependent features. With Python, user can pickle the model to include these functions in
saved binary. One drawback is, the output from pickle is not a stable serialization format and doesn’t work on different
Python version nor XGBoost version, not to mention different language environments. Another way to workaround
this limitation is to provide these functions again after the model is loaded. If the customized function is useful, please
consider making a PR for implementing it inside XGBoost, this way we can have your functions working with different
language bindings.

Loading pickled file from different version of XGBoost

As noted, pickled model is neither portable nor stable, but in some cases the pickled models are valuable. One way to
restore it in the future is to load it back with that specific version of Python and XGBoost, export the model by calling
save_model.

A similar procedure may be used to recover the model persisted in an old RDS file. In R, you are able to install an older
version of XGBoost using the remotes package:

library(remotes)
remotes::install_version("xgboost", "0.90.0.1") # Install version 0.90.0.1
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Once the desired version is installed, you can load the RDS file with readRDS and recover the xgb.Booster object.
Then call xgb.save to export the model using the stable representation. Now you should be able to use the model in
the latest version of XGBoost.

Saving and Loading the internal parameters configuration

XGBoost’s C API, Python API and R API support saving and loading the internal configuration directly as a JSON
string. In Python package:

bst = xgboost.train(...)
config = bst.save_config()
print(config)

or in R:

config <- xgb.config(bst)
print(config)

Will print out something similar to (not actual output as it’s too long for demonstration):

{
"Learner": {
"generic_parameter": {
"gpu_id": "0",
"gpu_page_size": "0",
"n_jobs": "0",
"random_state": "0",
"seed": "0",
"seed_per_iteration": "0"

},
"gradient_booster": {
"gbtree_train_param": {
"num_parallel_tree": "1",
"predictor": "gpu_predictor",
"process_type": "default",
"tree_method": "gpu_hist",
"updater": "grow_gpu_hist",
"updater_seq": "grow_gpu_hist"

},
"name": "gbtree",
"updater": {
"grow_gpu_hist": {
"gpu_hist_train_param": {
"debug_synchronize": "0",

},
"train_param": {
"alpha": "0",
"cache_opt": "1",
"colsample_bylevel": "1",
"colsample_bynode": "1",
"colsample_bytree": "1",
"default_direction": "learn",

(continues on next page)
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...

"subsample": "1"
}

}
}

},
"learner_train_param": {
"booster": "gbtree",
"disable_default_eval_metric": "0",
"dsplit": "auto",
"objective": "reg:squarederror"

},
"metrics": [],
"objective": {
"name": "reg:squarederror",
"reg_loss_param": {
"scale_pos_weight": "1"

}
}

},
"version": [1, 0, 0]

}

You can load it back to the model generated by same version of XGBoost by:

bst.load_config(config)

This way users can study the internal representation more closely. Please note that some JSON generators make use of
locale dependent floating point serialization methods, which is not supported by XGBoost.

Difference between saving model and dumping model

XGBoost has a function called dump_model in Booster object, which lets you to export the model in a readable format
like text, json or dot (graphviz). The primary use case for it is for model interpretation or visualization, and is not
supposed to be loaded back to XGBoost. The JSON version has a schema. See next section for more info.

JSON Schema

Another important feature of JSON format is a documented schema, based on which one can easily reuse the output
model from XGBoost. Here is the initial draft of JSON schema for the output model (not serialization, which will not
be stable as noted above). It’s subject to change due to the beta status. For an example of parsing XGBoost tree model,
see /demo/json-model. Please notice the “weight_drop” field used in “dart” booster. XGBoost does not scale tree
leaf directly, instead it saves the weights as a separated array.

{
"$schema": "http://json-schema.org/draft-07/schema#",
"definitions": {
"gbtree": {
"type": "object",
"properties": {

(continues on next page)
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"name": {
"const": "gbtree"

},
"model": {
"type": "object",
"properties": {
"gbtree_model_param": {
"$ref": "#/definitions/gbtree_model_param"

},
"trees": {
"type": "array",
"items": {
"type": "object",
"properties": {
"tree_param": {
"type": "object",
"properties": {
"num_nodes": {
"type": "string"

},
"size_leaf_vector": {
"type": "string"

},
"num_feature": {
"type": "string"

}
},
"required": [
"num_nodes",
"num_feature",
"size_leaf_vector"

]
},
"id": {
"type": "integer"

},
"loss_changes": {
"type": "array",
"items": {
"type": "number"

}
},
"sum_hessian": {
"type": "array",
"items": {
"type": "number"

}
},
"base_weights": {
"type": "array",
"items": {
"type": "number"

(continues on next page)
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}
},
"left_children": {
"type": "array",
"items": {
"type": "integer"

}
},
"right_children": {
"type": "array",
"items": {
"type": "integer"

}
},
"parents": {
"type": "array",
"items": {
"type": "integer"

}
},
"split_indices": {
"type": "array",
"items": {
"type": "integer"

}
},
"split_conditions": {
"type": "array",
"items": {
"type": "number"

}
},
"split_type": {
"type": "array",
"items": {
"type": "integer"

}
},
"default_left": {
"type": "array",
"items": {
"type": "integer"

}
},
"categories": {
"type": "array",
"items": {
"type": "integer"

}
},
"categories_nodes": {
"type": "array",

(continues on next page)
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"items": {
"type": "integer"

}
},
"categories_segments": {
"type": "array",
"items": {
"type": "integer"

}
},
"categorical_sizes": {
"type": "array",
"items": {
"type": "integer"

}
}

},
"required": [
"tree_param",
"loss_changes",
"sum_hessian",
"base_weights",
"left_children",
"right_children",
"parents",
"split_indices",
"split_conditions",
"default_left",
"categories",
"categories_nodes",
"categories_segments",
"categories_sizes"

]
}

},
"tree_info": {
"type": "array",
"items": {
"type": "integer"

}
}

},
"required": [
"gbtree_model_param",
"trees",
"tree_info"

]
}

},
"required": [
"name",
"model"

(continues on next page)
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]
},
"gbtree_model_param": {
"type": "object",
"properties": {
"num_trees": {
"type": "string"

},
"num_parallel_tree": {
"type": "string"

},
"size_leaf_vector": {
"type": "string"

}
},
"required": [
"num_trees",
"size_leaf_vector"

]
},
"tree_param": {
"type": "object",
"properties": {
"num_nodes": {
"type": "string"

},
"size_leaf_vector": {
"type": "string"

},
"num_feature": {
"type": "string"

}
},
"required": [
"num_nodes",
"num_feature",
"size_leaf_vector"

]
},
"reg_loss_param": {
"type": "object",
"properties": {
"scale_pos_weight": {
"type": "string"

}
}

},
"pseudo_huber_param": {
"type": "object",
"properties": {
"huber_slope": {
"type": "string"

(continues on next page)
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}
}

},
"aft_loss_param": {
"type": "object",
"properties": {
"aft_loss_distribution": {
"type": "string"

},
"aft_loss_distribution_scale": {
"type": "string"

}
}

},
"softmax_multiclass_param": {
"type": "object",
"properties": {
"num_class": { "type": "string" }

}
},
"lambda_rank_param": {
"type": "object",
"properties": {
"num_pairsample": { "type": "string" },
"fix_list_weight": { "type": "string" }

}
}

},
"type": "object",
"properties": {
"version": {
"type": "array",
"items": [
{
"type": "number",
"minimum": 1

},
{
"type": "number",
"minimum": 0

},
{
"type": "number",
"minimum": 0

}
],
"minItems": 3,
"maxItems": 3

},
"learner": {
"type": "object",
"properties": {

(continues on next page)
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"feature_names": {
"type": "array",
"items": {

"type": "string"
}

},
"feature_types": {
"type": "array",
"items": {

"type": "string"
}

},
"gradient_booster": {
"oneOf": [
{
"$ref": "#/definitions/gbtree"

},
{
"type": "object",
"properties": {
"name": { "const": "gblinear" },
"model": {
"type": "object",
"properties": {
"weights": {
"type": "array",
"items": {
"type": "number"

}
}

}
}

}
},
{
"type": "object",
"properties": {
"name": { "const": "dart" },
"gbtree": {
"$ref": "#/definitions/gbtree"

},
"weight_drop": {
"type": "array",
"items": {
"type": "number"

}
}

},
"required": [
"name",
"gbtree",
"weight_drop"

(continues on next page)
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]
}

]
},

"objective": {
"oneOf": [
{
"type": "object",
"properties": {
"name": { "const": "reg:squarederror" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:pseudohubererror" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:squaredlogerror" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:linear" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{

(continues on next page)
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"type": "object",
"properties": {
"name": { "const": "reg:logistic" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "binary:logistic" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "binary:logitraw" },
"reg_loss_param": { "$ref": "#/definitions/reg_loss_param"}

},
"required": [
"name",
"reg_loss_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "count:poisson" },
"poisson_regression_param": {
"type": "object",
"properties": {
"max_delta_step": { "type": "string" }

}
}

},
"required": [
"name",
"poisson_regression_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "reg:tweedie" },

(continues on next page)
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"tweedie_regression_param": {
"type": "object",
"properties": {
"tweedie_variance_power": { "type": "string" }

}
}

},
"required": [
"name",
"tweedie_regression_param"

]
},
{
"properties": {
"name": {
"const": "reg:absoluteerror"

}
},
"type": "object"

},
{
"type": "object",
"properties": {
"name": { "const": "survival:cox" }

},
"required": [ "name" ]

},
{
"type": "object",
"properties": {
"name": { "const": "reg:gamma" }

},
"required": [ "name" ]

},

{
"type": "object",
"properties": {
"name": { "const": "multi:softprob" },
"softmax_multiclass_param": { "$ref": "#/definitions/softmax_multiclass_

→˓param"}
},
"required": [
"name",
"softmax_multiclass_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "multi:softmax" },
"softmax_multiclass_param": { "$ref": "#/definitions/softmax_multiclass_

(continues on next page)
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→˓param"}
},
"required": [
"name",
"softmax_multiclass_param"

]
},

{
"type": "object",
"properties": {
"name": { "const": "rank:pairwise" },
"lambda_rank_param": { "$ref": "#/definitions/lambda_rank_param"}

},
"required": [
"name",
"lambda_rank_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "rank:ndcg" },
"lambda_rank_param": { "$ref": "#/definitions/lambda_rank_param"}

},
"required": [
"name",
"lambda_rank_param"

]
},
{
"type": "object",
"properties": {
"name": { "const": "rank:map" },
"lambda_rank_param": { "$ref": "#/definitions/lambda_rank_param"}

},
"required": [
"name",
"lambda_rank_param"

]
},
{
"type": "object",
"properties": {
"name": {"const": "survival:aft"},
"aft_loss_param": { "$ref": "#/definitions/aft_loss_param"}

}
},
{
"type": "object",
"properties": {
"name": {"const": "binary:hinge"}

(continues on next page)
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}
}

]
},

"learner_model_param": {
"type": "object",
"properties": {
"base_score": { "type": "string" },
"num_class": { "type": "string" },
"num_feature": { "type": "string" }

}
}

},
"required": [
"gradient_booster",
"objective"

]
}

},
"required": [
"version",
"learner"

]
}

1.4.3 Distributed XGBoost YARN on AWS

[This page is under construction.]

Note: XGBoost with Spark

If you are preprocessing training data with Spark, consider using XGBoost4J-Spark.

1.4.4 Distributed XGBoost on Kubernetes

Distributed XGBoost training and batch prediction on Kubernetes are supported via Kubeflow XGBoost Training Op-
erator.

Instructions

In order to run a XGBoost job in a Kubernetes cluster, perform the following steps:

1. Install XGBoost Operator on the Kubernetes cluster.

a. XGBoost Operator is designed to manage the scheduling and monitoring of XGBoost jobs. Follow this
installation guide to install XGBoost Operator.

2. Write application code that will be executed by the XGBoost Operator.
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a. To use XGBoost Operator, you’ll have to write a couple of Python scripts that implement the distributed
training logic for XGBoost. Please refer to the Iris classification example.

b. Data reader/writer: you need to implement the data reader and writer based on the specific requirements of
your chosen data source. For example, if your dataset is stored in a Hive table, you have to write the code
to read from or write to the Hive table based on the index of the worker.

c. Model persistence: in the Iris classification example, the model is stored in Alibaba OSS. If you want to
store your model in other storages such as Amazon S3 or Google NFS, you’ll need to implement the model
persistence logic based on the requirements of the chosen storage system.

3. Configure the XGBoost job using a YAML file.

a. YAML file is used to configure the computational resources and environment for your XGBoost job to run,
e.g. the number of workers/masters and the number of CPU/GPUs. Please refer to this YAML template for
an example.

4. Submit XGBoost job to a Kubernetes cluster.

a. Use kubectl to submit a distributed XGBoost job as illustrated here.

Support

Please submit an issue on XGBoost Operator repo for any feature requests or problems.

1.4.5 Distributed XGBoost with Dask

Dask is a parallel computing library built on Python. Dask allows easy management of distributed workers and excels
at handling large distributed data science workflows. The implementation in XGBoost originates from dask-xgboost
with some extended functionalities and a different interface. The tutorial here focuses on basic usage of dask with
CPU tree algorithms. For an overview of GPU based training and internal workings, see A New, Official Dask API for
XGBoost.
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Requirements

Dask can be installed using either pip or conda (see the dask installation documentation for more information). For
accelerating XGBoost with GPUs, dask-cuda is recommended for creating GPU clusters.

Overview

A dask cluster consists of three different components: a centralized scheduler, one or more workers, and one or more
clients which act as the user-facing entry point for submitting tasks to the cluster. When using XGBoost with dask, one
needs to call the XGBoost dask interface from the client side. Below is a small example which illustrates basic usage
of running XGBoost on a dask cluster:

import xgboost as xgb
import dask.array as da
import dask.distributed

if __name__ == "__main__":
cluster = dask.distributed.LocalCluster()
client = dask.distributed.Client(cluster)

# X and y must be Dask dataframes or arrays
num_obs = 1e5
num_features = 20
X = da.random.random(size=(num_obs, num_features), chunks=(1000, num_features))
y = da.random.random(size=(num_obs, 1), chunks=(1000, 1))

dtrain = xgb.dask.DaskDMatrix(client, X, y)

output = xgb.dask.train(
client,
{"verbosity": 2, "tree_method": "hist", "objective": "reg:squarederror"},
dtrain,
num_boost_round=4,
evals=[(dtrain, "train")],

)

Here we first create a cluster in single-node mode with distributed.LocalCluster, then connect a distributed.
Client to this cluster, setting up an environment for later computation. Notice that the cluster construction is guared
by __name__ == "__main__", which is necessary otherwise there might be obscure errors.

We then create a xgboost.dask.DaskDMatrix object and pass it to xgboost.dask.train(), along with some other
parameters, much like XGBoost’s normal, non-dask interface. Unlike that interface, data and label must be either
Dask DataFrame or Dask Array instances.

The primary difference with XGBoost’s dask interface is we pass our dask client as an additional argument for carrying
out the computation. Note that if client is set to None, XGBoost will use the default client returned by dask.

There are two sets of APIs implemented in XGBoost. The first set is functional API illustrated in above example.
Given the data and a set of parameters, the train function returns a model and the computation history as a Python
dictionary:

{'booster': Booster,
'history': dict}

For prediction, pass the output returned by train into xgboost.dask.predict():
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prediction = xgb.dask.predict(client, output, dtrain)
# Or equivalently, pass ``output['booster']``:
prediction = xgb.dask.predict(client, output['booster'], dtrain)

Eliminating the construction of DaskDMatrix is also possible, this can make the computation a bit faster when meta
information like base_margin is not needed:

prediction = xgb.dask.predict(client, output, X)
# Use inplace version.
prediction = xgb.dask.inplace_predict(client, output, X)

Here prediction is a dask Array object containing predictions from model if input is a DaskDMatrix or da.Array.
When putting dask collection directly into the predict function or using xgboost.dask.inplace_predict(), the
output type depends on input data. See next section for details.

Alternatively, XGBoost also implements the Scikit-Learn interface with DaskXGBClassifier, DaskXGBRegressor,
DaskXGBRanker and 2 random forest variances. This wrapper is similar to the single node Scikit-Learn interface in
xgboost, with dask collection as inputs and has an additional client attribute. See following sections and XGBoost
Dask Feature Walkthrough for more examples.

Running prediction

In previous example we used DaskDMatrix as input to predict function. In practice, it’s also possible to call predict
function directly on dask collections like Array and DataFrame and might have better prediction performance. When
DataFrame is used as prediction input, the result is a dask Series instead of array. Also, there’s in-place predict
support on dask interface, which can help reducing both memory usage and prediction time.

# dtrain is the DaskDMatrix defined above.
prediction = xgb.dask.predict(client, booster, dtrain)

or equivalently:

# where X is a dask DataFrame or dask Array.
prediction = xgb.dask.predict(client, booster, X)

Also for inplace prediction:

booster.set_param({'predictor': 'gpu_predictor'})
# where X is a dask DataFrame or dask Array containing cupy or cuDF backed data.
prediction = xgb.dask.inplace_predict(client, booster, X)

When input is da.Array object, output is always da.Array. However, if the input type is dd.DataFrame, output can
be dd.Series, dd.DataFrame or da.Array, depending on output shape. For example, when shap based prediction
is used, the return value can have 3 or 4 dimensions , in such cases an Array is always returned.

The performance of running prediction, either using predict or inplace_predict, is sensitive to number of blocks.
Internally, it’s implemented using da.map_blocks and dd.map_partitions. When number of partitions is large and
each of them have only small amount of data, the overhead of calling predict becomes visible. On the other hand, if not
using GPU, the number of threads used for prediction on each block matters. Right now, xgboost uses single thread for
each partition. If the number of blocks on each workers is smaller than number of cores, then the CPU workers might
not be fully utilized.

One simple optimization for running consecutive predictions is using distributed.Future:
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dataset = [X_0, X_1, X_2]
booster_f = client.scatter(booster, broadcast=True)
futures = []
for X in dataset:

# Here we pass in a future instead of concrete booster
shap_f = xgb.dask.predict(client, booster_f, X, pred_contribs=True)
futures.append(shap_f)

results = client.gather(futures)

This is only available on functional interface, as the Scikit-Learn wrapper doesn’t know how to maintain a valid future
for booster. To obtain the booster object from Scikit-Learn wrapper object:

cls = xgb.dask.DaskXGBClassifier()
cls.fit(X, y)

booster = cls.get_booster()

Scikit-Learn interface

As mentioned previously, there’s another interface that mimics the scikit-learn estimators with higher level of of ab-
straction. The interface is easier to use compared to the functional interface but with more constraints. It’s worth
mentioning that, although the interface mimics scikit-learn estimators, it doesn’t work with normal scikit-learn utilities
like GridSearchCV as scikit-learn doesn’t understand distributed dask data collection.

from distributed import LocalCluster, Client
import xgboost as xgb

def main(client: Client) -> None:
X, y = load_data()
clf = xgb.dask.DaskXGBClassifier(n_estimators=100, tree_method="hist")
clf.client = client # assign the client
clf.fit(X, y, eval_set=[(X, y)])
proba = clf.predict_proba(X)

if __name__ == "__main__":
with LocalCluster() as cluster:

with Client(cluster) as client:
main(client)
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Working with other clusters

LocalCluster is mostly used for testing. In real world applications some other clusters might be preferred. Exam-
ples are like LocalCUDACluster for single node multi-GPU instance, manually launched cluster by using command
line utilities like dask-worker from distributed for not yet automated environments. Some special clusters like
KubeCluster from dask-kubernetes package are also possible. The dask API in xgboost is orthogonal to the cluster
type and can be used with any of them. A typical testing workflow with KubeCluster looks like this:

from dask_kubernetes import KubeCluster # Need to install the ``dask-kubernetes`` package
from dask.distributed import Client
import xgboost as xgb
import dask
import dask.array as da

dask.config.set({"kubernetes.scheduler-service-type": "LoadBalancer",
"kubernetes.scheduler-service-wait-timeout": 360,
"distributed.comm.timeouts.connect": 360})

def main():
'''Connect to a remote kube cluster with GPU nodes and run training on it.'''
m = 1000
n = 10
kWorkers = 2 # assuming you have 2 GPU nodes on that cluster.
# You need to work out the worker-spec youself. See document in dask_kubernetes for
# its usage. Here we just want to show that XGBoost works on various clusters.
cluster = KubeCluster.from_yaml('worker-spec.yaml', deploy_mode='remote')
cluster.scale(kWorkers) # scale to use all GPUs

with Client(cluster) as client:
X = da.random.random(size=(m, n), chunks=100)
y = da.random.random(size=(m, ), chunks=100)

regressor = xgb.dask.DaskXGBRegressor(n_estimators=10, missing=0.0)
regressor.client = client
regressor.set_params(tree_method='gpu_hist')
regressor.fit(X, y, eval_set=[(X, y)])

if __name__ == '__main__':
# Launch the kube cluster on somewhere like GKE, then run this as client process.
# main function will connect to that cluster and start training xgboost model.
main()

However, these clusters might have their subtle differences like network configuration, or specific cluster implementa-
tion might contains bugs that we are not aware of. Open an issue if such case is found and there’s no documentation
on how to resolve it in that cluster implementation.
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Threads

XGBoost has built in support for parallel computation through threads by the setting nthread parameter (n_jobs for
scikit-learn). If these parameters are set, they will override the configuration in Dask. For example:

with dask.distributed.LocalCluster(n_workers=7, threads_per_worker=4) as cluster:

There are 4 threads allocated for each dask worker. Then by default XGBoost will use 4 threads in each process for
training. But if nthread parameter is set:

output = xgb.dask.train(
client,
{"verbosity": 1, "nthread": 8, "tree_method": "hist"},
dtrain,
num_boost_round=4,
evals=[(dtrain, "train")],

)

XGBoost will use 8 threads in each training process.

Working with asyncio

New in version 1.2.0.

XGBoost’s dask interface supports the new asyncio in Python and can be integrated into asynchronous workflows.
For using dask with asynchronous operations, please refer to this dask example and document in distributed. To use
XGBoost’s dask interface asynchronously, the client which is passed as an argument for training and prediction must
be operating in asynchronous mode by specifying asynchronous=True when the client is created (example below).
All functions (including DaskDMatrix) provided by the functional interface will then return coroutines which can then
be awaited to retrieve their result.

Functional interface:

async with dask.distributed.Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
m = await xgb.dask.DaskDMatrix(client, X, y)
output = await xgb.dask.train(client, {}, dtrain=m)

with_m = await xgb.dask.predict(client, output, m)
with_X = await xgb.dask.predict(client, output, X)
inplace = await xgb.dask.inplace_predict(client, output, X)

# Use ``client.compute`` instead of the ``compute`` method from dask collection
print(await client.compute(with_m))

While for the Scikit-Learn interface, trivial methods like set_params and accessing class attributes like
evals_result() do not require await. Other methods involving actual computation will return a coroutine and
hence require awaiting:

async with dask.distributed.Client(scheduler_address, asynchronous=True) as client:
X, y = generate_array()
regressor = await xgb.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
regressor.set_params(tree_method='hist') # trivial method, synchronous operation
regressor.client = client # accessing attribute, synchronous operation

(continues on next page)
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regressor = await regressor.fit(X, y, eval_set=[(X, y)])
prediction = await regressor.predict(X)

# Use `client.compute` instead of the `compute` method from dask collection
print(await client.compute(prediction))

Evaluation and Early Stopping

New in version 1.3.0.

The Dask interface allows the use of validation sets that are stored in distributed collections (Dask DataFrame or Dask
Array). These can be used for evaluation and early stopping.

To enable early stopping, pass one or more validation sets containing DaskDMatrix objects.

import dask.array as da
import xgboost as xgb

num_rows = 1e6
num_features = 100
num_partitions = 10
rows_per_chunk = num_rows / num_partitions

data = da.random.random(
size=(num_rows, num_features),
chunks=(rows_per_chunk, num_features)

)

labels = da.random.random(
size=(num_rows, 1),
chunks=(rows_per_chunk, 1)

)

X_eval = da.random.random(
size=(num_rows, num_features),
chunks=(rows_per_chunk, num_features)

)

y_eval = da.random.random(
size=(num_rows, 1),
chunks=(rows_per_chunk, 1)

)

dtrain = xgb.dask.DaskDMatrix(
client=client,
data=data,
label=labels

)

dvalid = xgb.dask.DaskDMatrix(
client=client,
data=X_eval,

(continues on next page)
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label=y_eval
)

result = xgb.dask.train(
client=client,
params={

"objective": "reg:squarederror",
},
dtrain=dtrain,
num_boost_round=10,
evals=[(dvalid, "valid1")],
early_stopping_rounds=3

)

When validation sets are provided to xgb.dask.train() in this way, the model object returned by xgb.dask.
train() contains a history of evaluation metrics for each validation set, across all boosting rounds.

print(result["history"])
# {'valid1': OrderedDict([('rmse', [0.28857, 0.28858, 0.288592, 0.288598])])}

If early stopping is enabled by also passing early_stopping_rounds, you can check the best iteration in the returned
booster.

booster = result["booster"]
print(booster.best_iteration)
best_model = booster[: booster.best_iteration]

Other customization

XGBoost dask interface accepts other advanced features found in single node Python interface, including callback
functions, custom evaluation metric and objective:

def eval_error_metric(predt, dtrain: xgb.DMatrix):
label = dtrain.get_label()
r = np.zeros(predt.shape)
gt = predt > 0.5
r[gt] = 1 - label[gt]
le = predt <= 0.5
r[le] = label[le]
return 'CustomErr', np.sum(r)

# custom callback
early_stop = xgb.callback.EarlyStopping(

rounds=early_stopping_rounds,
metric_name="CustomErr",
data_name="Train",
save_best=True,

)

booster = xgb.dask.train(
client,

(continues on next page)
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params={
"objective": "binary:logistic",
"eval_metric": ["error", "rmse"],
"tree_method": "hist",

},
dtrain=D_train,
evals=[(D_train, "Train"), (D_valid, "Valid")],
feval=eval_error_metric, # custom evaluation metric
num_boost_round=100,
callbacks=[early_stop],

)

Troubleshooting

New in version 1.6.0.

In some environments XGBoost might fail to resolve the IP address of the scheduler, a symptom is user receiving
OSError: [Errno 99] Cannot assign requested address error during training. A quick workaround is to
specify the address explicitly. To do that dask config is used:

import dask
from distributed import Client
from xgboost import dask as dxgb
# let xgboost know the scheduler address
dask.config.set({"xgboost.scheduler_address": "192.0.0.100"})

with Client(scheduler_file="sched.json") as client:
reg = dxgb.DaskXGBRegressor()

# or we can specify the port too
with dask.config.set({"xgboost.scheduler_address": "192.0.0.100:12345"}):

reg = dxgb.DaskXGBRegressor()

IPv6 Support

New in version 1.7.0.

XGBoost has initial IPv6 support for the dask interface on Linux. Due to most of the cluster support for IPv6 is partial
(dual stack instead of IPv6 only), we require additional user configuration similar to Troubleshooting to help XGBoost
obtain the correct address information:

import dask
from distributed import Client
from xgboost import dask as dxgb
# let xgboost know the scheduler address, use the same bracket format as dask.
with dask.config.set({"xgboost.scheduler_address": "[fd20:b6f:f759:9800::]"}):

with Client("[fd20:b6f:f759:9800::]") as client:
reg = dxgb.DaskXGBRegressor(tree_method="hist")

When GPU is used, XGBoost employs NCCL as the underlying communication framework, which may require some
additional configuration via environment variable depending on the setting of the cluster. Please note that IPv6 support
is Unix only.
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Why is the initialization of DaskDMatrix so slow and throws weird errors

The dask API in XGBoost requires construction of DaskDMatrix. With the Scikit-Learn interface, DaskDMatrix
is implicitly constructed for all input data during the fit or predict steps. You might have observed that
DaskDMatrix construction can take large amounts of time, and sometimes throws errors that don’t seem to be rel-
evant to DaskDMatrix. Here is a brief explanation for why. By default most dask computations are lazily evaluated,
which means that computation is not carried out until you explicitly ask for a result by, for example, calling compute().
See the previous link for details in dask, and this wiki for information on the general concept of lazy evaluation. The
DaskDMatrix constructor forces lazy computations to be evaluated, which means it’s where all your earlier computa-
tion actually being carried out, including operations like dd.read_csv(). To isolate the computation in DaskDMatrix
from other lazy computations, one can explicitly wait for results of input data before constructing a DaskDMatrix. Also
dask’s diagnostics dashboard can be used to monitor what operations are currently being performed.

Memory Usage

Here are some pratices on reducing memory usage with dask and xgboost.

• In a distributed work flow, data is best loaded by dask collections directly instead of loaded by client process.
When loading with client process is unavoidable, use client.scatter to distribute data from client process to
workers. See [2] for a nice summary.

• When using GPU input, like dataframe loaded by dask_cudf, you can try xgboost.dask.
DaskQuantileDMatrix as a drop in replacement for DaskDMatrix to reduce overall memory usage.
See Example of training with Dask on GPU for an example.

• Use in-place prediction when possible.

References:

1. https://github.com/dask/dask/issues/6833

2. https://stackoverflow.com/questions/45941528/how-to-efficiently-send-a-large-numpy-array-to-the-cluster-with-dask-array

1.4.6 Distributed XGBoost with PySpark

Starting from version 1.7.0, xgboost supports pyspark estimator APIs.

Note: The feature is still experimental and not yet ready for production use.

• XGBoost PySpark Estimator

– SparkXGBRegressor

– SparkXGBClassifier

• XGBoost PySpark GPU support

– Prepare the necessary packages

– Write your PySpark application

– Submit the PySpark application

– Model Persistence

– Accelerate the whole pipeline for xgboost pyspark
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XGBoost PySpark Estimator

SparkXGBRegressor

SparkXGBRegressor is a PySpark ML estimator. It implements the XGBoost classification algorithm based on XG-
Boost python library, and it can be used in PySpark Pipeline and PySpark ML meta algorithms like CrossValida-
tor/TrainValidationSplit/OneVsRest.

We can create a SparkXGBRegressor estimator like:

from xgboost.spark import SparkXGBRegressor
spark_reg_estimator = SparkXGBRegressor(
features_col="features",
label_col="label",
num_workers=2,

)

The above snippet creates a spark estimator which can fit on a spark dataset, and return a spark model that can transform
a spark dataset and generate dataset with prediction column. We can set almost all of xgboost sklearn estimator pa-
rameters as SparkXGBRegressor parameters, but some parameter such as nthread is forbidden in spark estimator, and
some parameters are replaced with pyspark specific parameters such as weight_col, validation_indicator_col, use_gpu,
for details please see SparkXGBRegressor doc.

The following code snippet shows how to train a spark xgboost regressor model, first we need to prepare a training
dataset as a spark dataframe contains “label” column and “features” column(s), the “features” column(s) must be
pyspark.ml.linalg.Vector type or spark array type or a list of feature column names.

xgb_regressor_model = xgb_regressor.fit(train_spark_dataframe)

The following code snippet shows how to predict test data using a spark xgboost regressor model, first we need to
prepare a test dataset as a spark dataframe contains “features” and “label” column, the “features” column must be
pyspark.ml.linalg.Vector type or spark array type.

transformed_test_spark_dataframe = xgb_regressor.predict(test_spark_dataframe)

The above snippet code returns a transformed_test_spark_dataframe that contains the input dataset columns and an
appended column “prediction” representing the prediction results.
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SparkXGBClassifier

SparkXGBClassifier estimator has similar API with SparkXGBRegressor, but it has some pyspark classifier specific
params, e.g. raw_prediction_col and probability_col parameters. Correspondingly, by default, SparkXGBClassifier-
Model transforming test dataset will generate result dataset with 3 new columns: - “prediction”: represents the predicted
label. - “raw_prediction”: represents the output margin values. - “probability”: represents the prediction probability
on each label.

XGBoost PySpark GPU support

XGBoost PySpark fully supports GPU acceleration. Users are not only able to enable efficient training but also utilize
their GPUs for the whole PySpark pipeline including ETL and inference. In below sections, we will walk through
an example of training on a PySpark standalone GPU cluster. To get started, first we need to install some additional
packages, then we can set the use_gpu parameter to True.

Prepare the necessary packages

Aside from the PySpark and XGBoost modules, we also need the cuDF package for handling Spark dataframe. We
recommend using either Conda or Virtualenv to manage python dependencies for PySpark jobs. Please refer to How
to Manage Python Dependencies in PySpark for more details on PySpark dependency management.

In short, to create a Python environment that can be sent to a remote cluster using virtualenv and pip:

python -m venv xgboost_env
source xgboost_env/bin/activate
pip install pyarrow pandas venv-pack xgboost
# https://docs.rapids.ai/install#pip-install
pip install cudf-cu11 --extra-index-url=https://pypi.nvidia.com
venv-pack -o xgboost_env.tar.gz

With Conda:

conda create -y -n xgboost_env -c conda-forge conda-pack python=3.9
conda activate xgboost_env
# use conda when the supported version of xgboost (1.7) is released on conda-forge
pip install xgboost
conda install cudf pyarrow pandas -c rapids -c nvidia -c conda-forge
conda pack -f -o xgboost_env.tar.gz

Write your PySpark application

Below snippet is a small example for training xgboost model with PySpark. Notice that we are using a list of feature
names and the additional parameter use_gpu:

from xgboost.spark import SparkXGBRegressor
spark = SparkSession.builder.getOrCreate()

# read data into spark dataframe
train_data_path = "xxxx/train"
train_df = spark.read.parquet(data_path)

(continues on next page)

1.4. XGBoost Tutorials 53

https://docs.rapids.ai/api/cudf/stable/
https://www.databricks.com/blog/2020/12/22/how-to-manage-python-dependencies-in-pyspark.html
https://www.databricks.com/blog/2020/12/22/how-to-manage-python-dependencies-in-pyspark.html


xgboost, Release 1.7.6

(continued from previous page)

test_data_path = "xxxx/test"
test_df = spark.read.parquet(test_data_path)

# assume the label column is named "class"
label_name = "class"

# get a list with feature column names
feature_names = [x.name for x in train_df.schema if x.name != label]

# create a xgboost pyspark regressor estimator and set use_gpu=True
regressor = SparkXGBRegressor(
features_col=feature_names,
label_col=label_name,
num_workers=2,
use_gpu=True,

)

# train and return the model
model = regressor.fit(train_df)

# predict on test data
predict_df = model.transform(test_df)
predict_df.show()

Submit the PySpark application

Assuming you have configured your Spark cluster with GPU support. Otherwise, please refer to spark standalone
configuration with GPU support.

export PYSPARK_DRIVER_PYTHON=python
export PYSPARK_PYTHON=./environment/bin/python

spark-submit \
--master spark://<master-ip>:7077 \
--conf spark.executor.resource.gpu.amount=1 \
--conf spark.task.resource.gpu.amount=1 \
--archives xgboost_env.tar.gz#environment \
xgboost_app.py

The submit command sends the Python environment created by pip or conda along with the specification of GPU
allocation. We will revisit this command later on.
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Model Persistence

Similar to standard PySpark ml estimators, one can persist and reuse the model with save and load methods:

regressor = SparkXGBRegressor()
model = regressor.fit(train_df)
# save the model
model.save("/tmp/xgboost-pyspark-model")
# load the model
model2 = SparkXGBRankerModel.load("/tmp/xgboost-pyspark-model")

To export the underlying booster model used by XGBoost:

regressor = SparkXGBRegressor()
model = regressor.fit(train_df)
# the same booster object returned by xgboost.train
booster: xgb.Booster = model.get_booster()
booster.predict(...)
booster.save_model("model.json") # or model.ubj, depending on your choice of format.

This booster is not only shared by other Python interfaces but also used by all the XGBoost bindings including the C,
Java, and the R package. Lastly, one can extract the booster file directly from a saved spark estimator without going
through the getter:

import xgboost as xgb
bst = xgb.Booster()
# Loading the model saved in previous snippet
bst.load_model("/tmp/xgboost-pyspark-model/model/part-00000")

Accelerate the whole pipeline for xgboost pyspark

With RAPIDS Accelerator for Apache Spark, you can leverage GPUs to accelerate the whole pipeline (ETL, Train,
Transform) for xgboost pyspark without any Python code change. An example submit command is shown below with
additional spark configurations and dependencies:

export PYSPARK_DRIVER_PYTHON=python
export PYSPARK_PYTHON=./environment/bin/python

spark-submit \
--master spark://<master-ip>:7077 \
--conf spark.executor.resource.gpu.amount=1 \
--conf spark.task.resource.gpu.amount=1 \
--packages com.nvidia:rapids-4-spark_2.12:23.04.0 \
--conf spark.plugins=com.nvidia.spark.SQLPlugin \
--conf spark.sql.execution.arrow.maxRecordsPerBatch=1000000 \
--archives xgboost_env.tar.gz#environment \
xgboost_app.py

When rapids plugin is enabled, both of the JVM rapids plugin and the cuDF Python package are required. More
configuration options can be found in the RAPIDS link above along with details on the plugin.
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1.4.7 Distributed XGBoost with Ray

Ray is a general purpose distributed execution framework. Ray can be used to scale computations from a single node
to a cluster of hundreds of nodes without changing any code.

The Python bindings of Ray come with a collection of well maintained machine learning libraries for hyperparameter
optimization and model serving.

The XGBoost-Ray project provides an interface to run XGBoost training and prediction jobs on a Ray cluster. It allows
to utilize distributed data representations, such as Modin dataframes, as well as distributed loading from cloud storage
(e.g. Parquet files).

XGBoost-Ray integrates well with hyperparameter optimization library Ray Tune, and implements advanced fault
tolerance handling mechanisms. With Ray you can scale your training jobs to hundreds of nodes just by adding new
nodes to a cluster. You can also use Ray to leverage multi GPU XGBoost training.

Installing and starting Ray

Ray can be installed from PyPI like this:

pip install ray

If you’re using Ray on a single machine, you don’t need to do anything else - XGBoost-Ray will automatically start a
local Ray cluster when used.

If you want to use Ray on a cluster, you can use the Ray cluster launcher.

Installing XGBoost-Ray

XGBoost-Ray is also available via PyPI:

pip install xgboost_ray

This will install all dependencies needed to run XGBoost on Ray, including Ray itself if it hasn’t been installed before.

Using XGBoost-Ray for training and prediction

XGBoost-Ray uses the same API as core XGBoost. There are only two differences:

1. Instead of using a xgboost.DMatrix, you’ll use a xgboost_ray.RayDMatrix object

2. There is an additional ray_params parameter that you can use to configure distributed training.

Simple training example

To run this simple example, you’ll need to install scikit-learn (with pip install sklearn).

In this example, we will load the breast cancer dataset and train a binary classifier using two actors.

from xgboost_ray import RayDMatrix, RayParams, train
from sklearn.datasets import load_breast_cancer

train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)

(continues on next page)
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(continued from previous page)

evals_result = {}
bst = train(

{
"objective": "binary:logistic",
"eval_metric": ["logloss", "error"],

},
train_set,
evals_result=evals_result,
evals=[(train_set, "train")],
verbose_eval=False,
ray_params=RayParams(num_actors=2, cpus_per_actor=1))

bst.save_model("model.xgb")
print("Final training error: {:.4f}".format(

evals_result["train"]["error"][-1]))

The only differences compared to the non-distributed API are the import statement (xgboost_ray instead of xgboost),
using the RayDMatrix instead of the DMatrix, and passing a RayParams object.

The return object is a regular xgboost.Booster instance.

Simple prediction example

from xgboost_ray import RayDMatrix, RayParams, predict
from sklearn.datasets import load_breast_cancer
import xgboost as xgb

data, labels = load_breast_cancer(return_X_y=True)

dpred = RayDMatrix(data, labels)

bst = xgb.Booster(model_file="model.xgb")
pred_ray = predict(bst, dpred, ray_params=RayParams(num_actors=2))

print(pred_ray)

In this example, the data will be split across two actors. The result array will integrate this data in the correct order.

The RayParams object

The RayParams object is used to configure various settings relating to the distributed training.

class xgboost_ray.RayParams(num_actors=0, cpus_per_actor=0, gpus_per_actor=-1,
resources_per_actor=None, elastic_training=False, max_failed_actors=0,
max_actor_restarts=0, checkpoint_frequency=5, distributed_callbacks=None,
verbose=None, placement_options=None)

Parameters to configure Ray-specific behavior.

Parameters

• num_actors (int) – Number of parallel Ray actors.
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• cpus_per_actor (int) – Number of CPUs to be used per Ray actor.

• gpus_per_actor (int) – Number of GPUs to be used per Ray actor.

• resources_per_actor (Dict | None) – Dict of additional resources required per Ray
actor.

• elastic_training (bool) – If True, training will continue with fewer actors if an actor
fails. Default False.

• max_failed_actors (int) – If elastic_training is True, this specifies the maximum num-
ber of failed actors with which we still continue training.

• max_actor_restarts (int) – Number of retries when Ray actors fail. Defaults to 0 (no
retries). Set to -1 for unlimited retries.

• checkpoint_frequency (int) – How often to save checkpoints. Defaults to 5 (every 5th
iteration).

• verbose (bool | None) – Whether to output Ray-specific info messages during train-
ing/prediction.

• placement_options (Dict[str, Any]) – Optional kwargs to pass to
PlacementGroupFactory in get_tune_resources().

• distributed_callbacks (List[DistributedCallback] | None) –

PublicAPI (beta): This API is in beta and may change before becoming stable.

Multi GPU training

Ray automatically detects GPUs on cluster nodes. In order to start training on multiple GPUs, all you have to do is
to set the gpus_per_actor parameter of the RayParams object, as well as the num_actors parameter for multiple
GPUs:

ray_params = RayParams(
num_actors=4,
gpus_per_actor=1,

)

This will train on four GPUs in parallel.

Note that it usually does not make sense to allocate more than one GPU per actor, as XGBoost relies on distributed
libraries such as Dask or Ray to utilize multi GPU taining.

Setting the number of CPUs per actor

XGBoost natively utilizes multi threading to speed up computations. Thus if your are training on CPUs only, there
is likely no benefit in using more than one actor per node. In that case, assuming you have a cluster of homogeneous
nodes, set the number of CPUs per actor to the number of CPUs available on each node, and the number of actors to
the number of nodes.

If you are using multi GPU training on a single node, divide the number of available CPUs evenly across all actors.
For instance, if you have 16 CPUs and 4 GPUs available, each actor should access 1 GPU and 4 CPUs.

If you are using a cluster of heterogeneous nodes (with different amounts of CPUs), you might just want to use the
greatest common divisor for the number of CPUs per actor. E.g. if you have a cluster of three nodes with 4, 8, and 12
CPUs, respectively, you’d start 6 actors with 4 CPUs each for maximum CPU utilization.
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Fault tolerance

XGBoost-Ray supports two fault tolerance modes. In non-elastic training, whenever a training actor dies (e.g. because
the node goes down), the training job will stop, XGBoost-Ray will wait for the actor (or its resources) to become
available again (this might be on a different node), and then continue training once all actors are back.

In elastic-training, whenever a training actor dies, the rest of the actors continue training without the dead actor. If the
actor comes back, it will be re-integrated into training again.

Please note that in elastic-training this means that you will train on fewer data for some time. The benefit is that you can
continue training even if a node goes away for the remainder of the training run, and don’t have to wait until it is back
up again. In practice this usually leads to a very minor decrease in accuracy but a much shorter training time compared
to non-elastic training.

Both training modes can be configured using the respective RayParams parameters.

Hyperparameter optimization

XGBoost-Ray integrates well with hyperparameter optimization framework Ray Tune. Ray Tune uses Ray to start
multiple distributed trials with different hyperparameter configurations. If used with XGBoost-Ray, these trials will
then start their own distributed training jobs.

XGBoost-Ray automatically reports evaluation results back to Ray Tune. There’s only a few things you need to do:

1. Put your XGBoost-Ray training call into a function accepting parameter configurations (train_model in the
example below).

2. Create a RayParams object (ray_params in the example below).

3. Define the parameter search space (config dict in the example below).

4. Call tune.run():

• The metric parameter should contain the metric you’d like to optimize. Usually this consists of the
prefix passed to the evals argument of xgboost_ray.train(), and an eval_metric passed in the
XGBoost parameters (train-error in the example below).

• The mode should either be min or max, depending on whether you’d like to minimize or maximize the
metric

• The resources_per_actor should be set using ray_params.get_tune_resources(). This will
make sure that each trial has the necessary resources available to start their distributed training jobs.

from xgboost_ray import RayDMatrix, RayParams, train
from sklearn.datasets import load_breast_cancer

num_actors = 4
num_cpus_per_actor = 1

ray_params = RayParams(
num_actors=num_actors, cpus_per_actor=num_cpus_per_actor)

def train_model(config):
train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)

evals_result = {}
bst = train(

(continues on next page)
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(continued from previous page)

params=config,
dtrain=train_set,
evals_result=evals_result,
evals=[(train_set, "train")],
verbose_eval=False,
ray_params=ray_params)

bst.save_model("model.xgb")

from ray import tune

# Specify the hyperparameter search space.
config = {

"tree_method": "approx",
"objective": "binary:logistic",
"eval_metric": ["logloss", "error"],
"eta": tune.loguniform(1e-4, 1e-1),
"subsample": tune.uniform(0.5, 1.0),
"max_depth": tune.randint(1, 9)

}

# Make sure to use the `get_tune_resources` method to set the `resources_per_trial`
analysis = tune.run(

train_model,
config=config,
metric="train-error",
mode="min",
num_samples=4,
resources_per_trial=ray_params.get_tune_resources())

print("Best hyperparameters", analysis.best_config)

Ray Tune supports various search algorithms and libraries (e.g. BayesOpt, Tree-Parzen estimators), smart schedulers
like successive halving, and other features. Please refer to the Ray Tune documentation for more information.

Additional resources

• XGBoost-Ray repository

• XGBoost-Ray documentation

• Ray core documentation

• Ray Tune documentation
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1.4.8 DART booster

XGBoost mostly combines a huge number of regression trees with a small learning rate. In this situation, trees added
early are significant and trees added late are unimportant.

Vinayak and Gilad-Bachrach proposed a new method to add dropout techniques from the deep neural net community
to boosted trees, and reported better results in some situations.

This is a instruction of new tree booster dart.

Original paper

Rashmi Korlakai Vinayak, Ran Gilad-Bachrach. “DART: Dropouts meet Multiple Additive Regression Trees.” [PMLR,
arXiv].

Features

• Drop trees in order to solve the over-fitting.

– Trivial trees (to correct trivial errors) may be prevented.

Because of the randomness introduced in the training, expect the following few differences:

• Training can be slower than gbtree because the random dropout prevents usage of the prediction buffer.

• The early stop might not be stable, due to the randomness.

How it works

• In 𝑚-th training round, suppose 𝑘 trees are selected to be dropped.

• Let 𝐷 =
∑︀

𝑖∈K 𝐹𝑖 be the leaf scores of dropped trees and 𝐹𝑚 = 𝜂𝐹𝑚 be the leaf scores of a new tree.

• The objective function is as follows:

Obj =

𝑛∑︁
𝑗=1

𝐿
(︁
𝑦𝑗 , 𝑦

𝑚−1
𝑗 −𝐷𝑗 + 𝐹𝑚

)︁
+Ω

(︁
𝐹𝑚

)︁
.

• 𝐷 and 𝐹𝑚 are overshooting, so using scale factor

𝑦𝑚𝑗 =
∑︁
𝑖 ̸∈K

𝐹𝑖 + 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝑏𝐹𝑚

)︃
.

Parameters

The booster dart inherits gbtree booster, so it supports all parameters that gbtree does, such as eta, gamma,
max_depth etc.

Additional parameters are noted below:

• sample_type: type of sampling algorithm.

– uniform: (default) dropped trees are selected uniformly.

– weighted: dropped trees are selected in proportion to weight.

• normalize_type: type of normalization algorithm.
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– tree: (default) New trees have the same weight of each of dropped trees.

𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 +
1

𝑘
𝐹𝑚

)︃
= 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 +
𝜂

𝑘
𝐹𝑚

)︃
∼ 𝑎

(︁
1 +

𝜂

𝑘

)︁
𝐷

= 𝑎
𝑘 + 𝜂

𝑘
𝐷 = 𝐷,

𝑎 =
𝑘

𝑘 + 𝜂

– forest: New trees have the same weight of sum of dropped trees (forest).

𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝐹𝑚

)︃
= 𝑎

(︃∑︁
𝑖∈K

𝐹𝑖 + 𝜂𝐹𝑚

)︃
∼ 𝑎 (1 + 𝜂)𝐷

= 𝑎(1 + 𝜂)𝐷 = 𝐷,

𝑎 =
1

1 + 𝜂
.

• rate_drop: dropout rate.

– range: [0.0, 1.0]

• skip_drop: probability of skipping dropout.

– If a dropout is skipped, new trees are added in the same manner as gbtree.

– range: [0.0, 1.0]

Sample Script

import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'booster': 'dart',

'max_depth': 5, 'learning_rate': 0.1,
'objective': 'binary:logistic',
'sample_type': 'uniform',
'normalize_type': 'tree',
'rate_drop': 0.1,
'skip_drop': 0.5}

num_round = 50
bst = xgb.train(param, dtrain, num_round)
preds = bst.predict(dtest)
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1.4.9 Monotonic Constraints

It is often the case in a modeling problem or project that the functional form of an acceptable model is constrained in
some way. This may happen due to business considerations, or because of the type of scientific question being inves-
tigated. In some cases, where there is a very strong prior belief that the true relationship has some quality, constraints
can be used to improve the predictive performance of the model.

A common type of constraint in this situation is that certain features bear a monotonic relationship to the predicted
response:

𝑓(𝑥1, 𝑥2, . . . , 𝑥, . . . , 𝑥𝑛−1, 𝑥𝑛) ≤ 𝑓(𝑥1, 𝑥2, . . . , 𝑥
′, . . . , 𝑥𝑛−1, 𝑥𝑛)

whenever 𝑥 ≤ 𝑥′ is an increasing constraint; or

𝑓(𝑥1, 𝑥2, . . . , 𝑥, . . . , 𝑥𝑛−1, 𝑥𝑛) ≥ 𝑓(𝑥1, 𝑥2, . . . , 𝑥
′, . . . , 𝑥𝑛−1, 𝑥𝑛)

whenever 𝑥 ≤ 𝑥′ is a decreasing constraint.

XGBoost has the ability to enforce monotonicity constraints on any features used in a boosted model.

A Simple Example

To illustrate, let’s create some simulated data with two features and a response according to the following scheme

𝑦 = 5𝑥1 + sin(10𝜋𝑥1)− 5𝑥2 − cos(10𝜋𝑥2) +𝑁(0, 0.01)𝑥1, 𝑥2 ∈ [0, 1]

The response generally increases with respect to the 𝑥1 feature, but a sinusoidal variation has been superimposed, re-
sulting in the true effect being non-monotonic. For the 𝑥2 feature the variation is decreasing with a sinusoidal variation.

Let’s fit a boosted tree model to this data without imposing any monotonic constraints:
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The black curve shows the trend inferred from the model for each feature. To make these plots the distinguished feature
𝑥𝑖 is fed to the model over a one-dimensional grid of values, while all the other features (in this case only one other
feature) are set to their average values. We see that the model does a good job of capturing the general trend with the
oscillatory wave superimposed.

Here is the same model, but fit with monotonicity constraints:

We see the effect of the constraint. For each variable the general direction of the trend is still evident, but the oscillatory
behaviour no longer remains as it would violate our imposed constraints.

Enforcing Monotonic Constraints in XGBoost

It is very simple to enforce monotonicity constraints in XGBoost. Here we will give an example using Python, but the
same general idea generalizes to other platforms.

Suppose the following code fits your model without monotonicity constraints

model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)
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Then fitting with monotonicity constraints only requires adding a single parameter

params_constrained = params.copy()
params_constrained['monotone_constraints'] = (1,-1)

model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

In this example the training data X has two columns, and by using the parameter values (1,-1) we are telling XGBoost
to impose an increasing constraint on the first predictor and a decreasing constraint on the second.

Some other examples:

• (1,0): An increasing constraint on the first predictor and no constraint on the second.

• (0,-1): No constraint on the first predictor and a decreasing constraint on the second.

Note for the ‘hist’ tree construction algorithm. If tree_method is set to either hist, approx or gpu_hist, enabling
monotonic constraints may produce unnecessarily shallow trees. This is because the hist method reduces the number
of candidate splits to be considered at each split. Monotonic constraints may wipe out all available split candidates, in
which case no split is made. To reduce the effect, you may want to increase the max_bin parameter to consider more
split candidates.

Using feature names

XGBoost’s Python package supports using feature names instead of feature index for specifying the constraints. Given
a data frame with columns ["f0", "f1", "f2"], the monotonic constraint can be specified as {"f0": 1, "f2":
-1}, and "f1" will default to 0 (no constraint).

1.4.10 Random Forests(TM) in XGBoost

XGBoost is normally used to train gradient-boosted decision trees and other gradient boosted models. Random Forests
use the same model representation and inference, as gradient-boosted decision trees, but a different training algorithm.
One can use XGBoost to train a standalone random forest or use random forest as a base model for gradient boosting.
Here we focus on training standalone random forest.

We have native APIs for training random forests since the early days, and a new Scikit-Learn wrapper after 0.82 (not
included in 0.82). Please note that the new Scikit-Learn wrapper is still experimental, which means we might change
the interface whenever needed.

Standalone Random Forest With XGBoost API

The following parameters must be set to enable random forest training.

• booster should be set to gbtree, as we are training forests. Note that as this is the default, this parameter
needn’t be set explicitly.

• subsample must be set to a value less than 1 to enable random selection of training cases (rows).

• One of colsample_by* parameters must be set to a value less than 1 to enable random selection of columns.
Normally, colsample_bynode would be set to a value less than 1 to randomly sample columns at each tree split.

• num_parallel_tree should be set to the size of the forest being trained.

• num_boost_round should be set to 1 to prevent XGBoost from boosting multiple random forests. Note that this
is a keyword argument to train(), and is not part of the parameter dictionary.
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• eta (alias: learning_rate) must be set to 1 when training random forest regression.

• random_state can be used to seed the random number generator.

Other parameters should be set in a similar way they are set for gradient boosting. For instance, objective will typi-
cally be reg:squarederror for regression and binary:logistic for classification, lambda should be set according
to a desired regularization weight, etc.

If both num_parallel_tree and num_boost_round are greater than 1, training will use a combination of ran-
dom forest and gradient boosting strategy. It will perform num_boost_round rounds, boosting a random forest
of num_parallel_tree trees at each round. If early stopping is not enabled, the final model will consist of
num_parallel_tree * num_boost_round trees.

Here is a sample parameter dictionary for training a random forest on a GPU using xgboost:

params = {
'colsample_bynode': 0.8,
'learning_rate': 1,
'max_depth': 5,
'num_parallel_tree': 100,
'objective': 'binary:logistic',
'subsample': 0.8,
'tree_method': 'gpu_hist'

}

A random forest model can then be trained as follows:

bst = train(params, dmatrix, num_boost_round=1)

Standalone Random Forest With Scikit-Learn-Like API

XGBRFClassifier and XGBRFRegressor are SKL-like classes that provide random forest functionality. They are
basically versions of XGBClassifier and XGBRegressor that train random forest instead of gradient boosting, and
have default values and meaning of some of the parameters adjusted accordingly. In particular:

• n_estimators specifies the size of the forest to be trained; it is converted to num_parallel_tree, instead of
the number of boosting rounds

• learning_rate is set to 1 by default

• colsample_bynode and subsample are set to 0.8 by default

• booster is always gbtree

For a simple example, you can train a random forest regressor with:

from sklearn.model_selection import KFold

# Your code ...

kf = KFold(n_splits=2)
for train_index, test_index in kf.split(X, y):

xgb_model = xgb.XGBRFRegressor(random_state=42).fit(
X[train_index], y[train_index])

Note that these classes have a smaller selection of parameters compared to using train(). In particular, it is impossible
to combine random forests with gradient boosting using this API.
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Caveats

• XGBoost uses 2nd order approximation to the objective function. This can lead to results that differ from a
random forest implementation that uses the exact value of the objective function.

• XGBoost does not perform replacement when subsampling training cases. Each training case can occur in a
subsampled set either 0 or 1 time.

1.4.11 Feature Interaction Constraints

The decision tree is a powerful tool to discover interaction among independent variables (features). Variables that
appear together in a traversal path are interacting with one another, since the condition of a child node is predicated on
the condition of the parent node. For example, the highlighted red path in the diagram below contains three variables:
𝑥1, 𝑥7, and 𝑥10, so the highlighted prediction (at the highlighted leaf node) is the product of interaction between 𝑥1,
𝑥7, and 𝑥10.

When the tree depth is larger than one, many variables interact on the sole basis of minimizing training loss, and the
resulting decision tree may capture a spurious relationship (noise) rather than a legitimate relationship that generalizes
across different datasets. Feature interaction constraints allow users to decide which variables are allowed to interact
and which are not.

Potential benefits include:

• Better predictive performance from focusing on interactions that work – whether through domain specific knowl-
edge or algorithms that rank interactions

• Less noise in predictions; better generalization

• More control to the user on what the model can fit. For example, the user may want to exclude some interactions
even if they perform well due to regulatory constraints.

A Simple Example

Feature interaction constraints are expressed in terms of groups of variables that are allowed to interact. For example,
the constraint [0, 1] indicates that variables 𝑥0 and 𝑥1 are allowed to interact with each other but with no other
variable. Similarly, [2, 3, 4] indicates that 𝑥2, 𝑥3, and 𝑥4 are allowed to interact with one another but with no other
variable. A set of feature interaction constraints is expressed as a nested list, e.g. [[0, 1], [2, 3, 4]], where each
inner list is a group of indices of features that are allowed to interact with each other.

In the following diagram, the left decision tree is in violation of the first constraint ([0, 1]), whereas the right decision
tree complies with both the first and second constraints ([0, 1], [2, 3, 4]).

forbidden allowed
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Enforcing Feature Interaction Constraints in XGBoost

It is very simple to enforce feature interaction constraints in XGBoost. Here we will give an example using Python, but
the same general idea generalizes to other platforms.

Suppose the following code fits your model without feature interaction constraints:

model_no_constraints = xgb.train(params, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

Then fitting with feature interaction constraints only requires adding a single parameter:

params_constrained = params.copy()
# Use nested list to define feature interaction constraints
params_constrained['interaction_constraints'] = '[[0, 2], [1, 3, 4], [5, 6]]'
# Features 0 and 2 are allowed to interact with each other but with no other feature
# Features 1, 3, 4 are allowed to interact with one another but with no other feature
# Features 5 and 6 are allowed to interact with each other but with no other feature

model_with_constraints = xgb.train(params_constrained, dtrain,
num_boost_round = 1000, evals = evallist,
early_stopping_rounds = 10)

Using feature name instead

XGBoost’s Python package supports using feature names instead of feature index for specifying the constraints. Given
a data frame with columns ["f0", "f1", "f2"], the feature interaction constraint can be specified as [["f0",
"f2"]].

Advanced topic

The intuition behind interaction constraints is simple. Users may have prior knowledge about relations between different
features, and encode it as constraints during model construction. But there are also some subtleties around specifying
constraints. Take the constraint [[1, 2], [2, 3, 4]] as an example. The second feature appears in two different
interaction sets, [1, 2] and [2, 3, 4]. So the union set of features allowed to interact with 2 is {1, 3, 4}. In
the following diagram, the root splits at feature 2. Because all its descendants should be able to interact with it, all 4
features are legitimate split candidates at the second layer. At first sight, this might look like disregarding the specified
constraint sets, but it is not.

This has lead to some interesting implications of feature interaction constraints. Take [[0, 1], [0, 1, 2], [1,
2]] as another example. Assuming we have only 3 available features in our training datasets for presentation purpose,
careful readers might have found out that the above constraint is the same as simply [[0, 1, 2]]. Since no matter
which feature is chosen for split in the root node, all its descendants are allowd to include every feature as legitimate
split candidates without violating interaction constraints.

For one last example, we use [[0, 1], [1, 3, 4]] and choose feature 0 as split for the root node. At the second
layer of the built tree, 1 is the only legitimate split candidate except for 0 itself, since they belong to the same constraint
set. Following the grow path of our example tree below, the node at the second layer splits at feature 1. But due to the
fact that 1 also belongs to second constraint set [1, 3, 4], at the third layer, we are allowed to include all features as
split candidates and still comply with the interaction constraints of its ascendants.
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Fig. 1: {1, 2, 3, 4} represents the sets of legitimate split features.

Fig. 2: {0, 1, 3, 4} represents the sets of legitimate split features.
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1.4.12 Survival Analysis with Accelerated Failure Time

• What is survival analysis?

• Accelerated Failure Time model

• How to use

What is survival analysis?

Survival analysis (regression) models time to an event of interest. Survival analysis is a special kind of regression
and differs from the conventional regression task as follows:

• The label is always positive, since you cannot wait a negative amount of time until the event occurs.

• The label may not be fully known, or censored, because “it takes time to measure time.”

The second bullet point is crucial and we should dwell on it more. As you may have guessed from the name, one of the
earliest applications of survival analysis is to model mortality of a given population. Let’s take NCCTG Lung Cancer
Dataset as an example. The first 8 columns represent features and the last column, Time to death, represents the label.

Inst Age Sex ph.ecog ph.karno pat.karno meal.cal wt.loss Time to death (days)
3 74 1 1 90 100 1175 N/A 306
3 68 1 0 90 90 1225 15 455
3 56 1 0 90 90 N/A 15 [1010,+∞)
5 57 1 1 90 60 1150 11 210
1 60 1 0 100 90 N/A 0 883
12 74 1 1 50 80 513 0 [1022,+∞)
7 68 2 2 70 60 384 10 310

Take a close look at the label for the third patient. His label is a range, not a single number. The third patient’s label
is said to be censored, because for some reason the experimenters could not get a complete measurement for that label.
One possible scenario: the patient survived the first 1010 days and walked out of the clinic on the 1011th day, so his
death was not directly observed. Another possibility: The experiment was cut short (since you cannot run it forever)
before his death could be observed. In any case, his label is [1010,+∞), meaning his time to death can be any number
that’s higher than 1010, e.g. 2000, 3000, or 10000.

There are four kinds of censoring:

• Uncensored: the label is not censored and given as a single number.

• Right-censored: the label is of form [𝑎,+∞), where 𝑎 is the lower bound.

• Left-censored: the label is of form [0, 𝑏], where 𝑏 is the upper bound.

• Interval-censored: the label is of form [𝑎, 𝑏], where 𝑎 and 𝑏 are the lower and upper bounds, respectively.

Right-censoring is the most commonly used.
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Accelerated Failure Time model

Accelerated Failure Time (AFT) model is one of the most commonly used models in survival analysis. The model is
of the following form:

ln𝑌 = ⟨w,x⟩+ 𝜎𝑍

where

• x is a vector in R𝑑 representing the features.

• w is a vector consisting of 𝑑 coefficients, each corresponding to a feature.

• ⟨·, ·⟩ is the usual dot product in R𝑑.

• ln (·) is the natural logarithm.

• 𝑌 and 𝑍 are random variables.

– 𝑌 is the output label.

– 𝑍 is a random variable of a known probability distribution. Common choices are the normal distribution,
the logistic distribution, and the extreme distribution. Intuitively, 𝑍 represents the “noise” that pulls the
prediction ⟨w,x⟩ away from the true log label ln𝑌 .

• 𝜎 is a parameter that scales the size of 𝑍.

Note that this model is a generalized form of a linear regression model 𝑌 = ⟨w,x⟩. In order to make AFT work with
gradient boosting, we revise the model as follows:

ln𝑌 = 𝒯 (x) + 𝜎𝑍

where 𝒯 (x) represents the output from a decision tree ensemble, given input x. Since 𝑍 is a random variable, we have
a likelihood defined for the expression ln𝑌 = 𝒯 (x)+𝜎𝑍. So the goal for XGBoost is to maximize the (log) likelihood
by fitting a good tree ensemble 𝒯 (x).

How to use

The first step is to express the labels in the form of a range, so that every data point has two numbers associated with
it, namely the lower and upper bounds for the label. For uncensored labels, use a degenerate interval of form [𝑎, 𝑎].

Censoring type Interval form Lower bound finite? Upper bound finite?
Uncensored [𝑎, 𝑎] ✓✓✓ ✓✓✓
Right-censored [𝑎,+∞) ✓✓✓
Left-censored [0, 𝑏] ✓✓✓ ✓✓✓
Interval-censored [𝑎, 𝑏] ✓✓✓ ✓✓✓

Collect the lower bound numbers in one array (let’s call it y_lower_bound) and the upper bound number in another
array (call it y_upper_bound). The ranged labels are associated with a data matrix object via calls to xgboost.
DMatrix.set_float_info():

Listing 14: Python

import numpy as np
import xgboost as xgb

(continues on next page)
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(continued from previous page)

# 4-by-2 Data matrix
X = np.array([[1, -1], [-1, 1], [0, 1], [1, 0]])
dtrain = xgb.DMatrix(X)

# Associate ranged labels with the data matrix.
# This example shows each kind of censored labels.
# uncensored right left interval
y_lower_bound = np.array([ 2.0, 3.0, 0.0, 4.0])
y_upper_bound = np.array([ 2.0, +np.inf, 4.0, 5.0])
dtrain.set_float_info('label_lower_bound', y_lower_bound)
dtrain.set_float_info('label_upper_bound', y_upper_bound)

Listing 15: R

library(xgboost)

# 4-by-2 Data matrix
X <- matrix(c(1., -1., -1., 1., 0., 1., 1., 0.),

nrow=4, ncol=2, byrow=TRUE)
dtrain <- xgb.DMatrix(X)

# Associate ranged labels with the data matrix.
# This example shows each kind of censored labels.
# uncensored right left interval
y_lower_bound <- c( 2., 3., 0., 4.)
y_upper_bound <- c( 2., +Inf, 4., 5.)
setinfo(dtrain, 'label_lower_bound', y_lower_bound)
setinfo(dtrain, 'label_upper_bound', y_upper_bound)

Now we are ready to invoke the training API:

Listing 16: Python

params = {'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'aft_loss_distribution': 'normal',
'aft_loss_distribution_scale': 1.20,
'tree_method': 'hist', 'learning_rate': 0.05, 'max_depth': 2}

bst = xgb.train(params, dtrain, num_boost_round=5,
evals=[(dtrain, 'train')])
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Listing 17: R

params <- list(objective='survival:aft',
eval_metric='aft-nloglik',
aft_loss_distribution='normal',
aft_loss_distribution_scale=1.20,
tree_method='hist',
learning_rate=0.05,
max_depth=2)

watchlist <- list(train = dtrain)
bst <- xgb.train(params, dtrain, nrounds=5, watchlist)

We set objective parameter to survival:aft and eval_metric to aft-nloglik, so that the log likelihood for
the AFT model would be maximized. (XGBoost will actually minimize the negative log likelihood, hence the name
aft-nloglik.)

The parameter aft_loss_distribution corresponds to the distribution of the 𝑍 term in the AFT model, and
aft_loss_distribution_scale corresponds to the scaling factor 𝜎.

Currently, you can choose from three probability distributions for aft_loss_distribution:

aft_loss_distribution Probability Density Function (PDF)

normal
exp (−𝑧2/2)√

2𝜋

logistic
𝑒𝑧

(1 + 𝑒𝑧)2

extreme 𝑒𝑧𝑒− exp 𝑧

Note that it is not yet possible to set the ranged label using the scikit-learn interface (e.g. xgboost.XGBRegressor).
For now, you should use xgboost.train with xgboost.DMatrix. For a collection of Python examples, see Survival
Analysis Walkthrough

1.4.13 C API Tutorial

In this tutorial, we are going to install XGBoost library & configure the CMakeLists.txt file of our C/C++ application
to link XGBoost library with our application. Later on, we will see some useful tips for using C API and code snippets
as examples to use various functions available in C API to perform basic task like loading, training model & predicting
on test dataset. For API reference, please visit XGBoost C Package

• Requirements

• Install XGBoost on conda environment

• Configure CMakeList.txt file of your application to link with XGBoost

• Usefull Tips To Remember

• Sample examples along with Code snippet to use C API functions
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Requirements

Install CMake - Follow the cmake installation documentation for instructions. Install Conda - Follow the conda instal-
lation documentation for instructions

Install XGBoost on conda environment

Run the following commands on your terminal. The below commands will install the XGBoost in your XGBoost folder
of the repository cloned

# clone the XGBoost repository & its submodules
git clone --recursive https://github.com/dmlc/xgboost
cd xgboost
mkdir build
cd build
# Activate the Conda environment, into which we'll install XGBoost
conda activate [env_name]
# Build the compiled version of XGBoost inside the build folder
cmake .. -DCMAKE_INSTALL_PREFIX=$CONDA_PREFIX
# install XGBoost in your conda environment (usually under [your home directory]/
→˓miniconda3)
make install

Configure CMakeList.txt file of your application to link with XGBoost

Here, we assume that your C++ application is using CMake for builds.

Use find_package() and target_link_libraries() in your application’s CMakeList.txt to link with the XGBoost
library:

cmake_minimum_required(VERSION 3.18)
project(your_project_name LANGUAGES C CXX VERSION your_project_version)
find_package(xgboost REQUIRED)
add_executable(your_project_name /path/to/project_file.c)
target_link_libraries(your_project_name xgboost::xgboost)

To ensure that CMake can locate the XGBoost library, supply -DCMAKE_PREFIX_PATH=$CONDA_PREFIX argument
when invoking CMake. This option instructs CMake to locate the XGBoost library in $CONDA_PREFIX, which is
where your Conda environment is located.

# Nagivate to the build directory for your application
cd build
# Activate the Conda environment where we previously installed XGBoost
conda activate [env_name]
# Invoke CMake with CMAKE_PREFIX_PATH
cmake .. -DCMAKE_PREFIX_PATH=$CONDA_PREFIX
# Build your application
make
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Usefull Tips To Remember

Below are some useful tips while using C API:

1. Error handling: Always check the return value of the C API functions.

a. In a C application: Use the following macro to guard all calls to XGBoost’s C API functions. The macro prints
all the error/ exception occurred:

1 #define safe_xgboost(call) { \
2 int err = (call); \
3 if (err != 0) { \
4 fprintf(stderr, "%s:%d: error in %s: %s\n", __FILE__, __LINE__, #call,␣

→˓XGBGetLastError()); \
5 exit(1); \
6 } \
7 }

In your application, wrap all C API function calls with the macro as follows:

DMatrixHandle train;
safe_xgboost(XGDMatrixCreateFromFile("/path/to/training/dataset/", silent, &train));

b. In a C++ application: modify the macro safe_xgboost to throw an exception upon an error.

1 #define safe_xgboost(call) { \
2 int err = (call); \
3 if (err != 0) { \
4 throw new Exception(std::string(__FILE__) + ":" + std::to_string(__LINE__) + \
5 ": error in " + #call + ":" + XGBGetLastError())); \
6 } \
7 }

c. Assertion technique: It works both in C/ C++. If expression evaluates to 0 (false), then the expression, source
code filename, and line number are sent to the standard error, and then abort() function is called. It can be used
to test assumptions made by you in the code.

DMatrixHandle dmat;
assert( XGDMatrixCreateFromFile("training_data.libsvm", 0, &dmat) == 0);

2. Always remember to free the allocated space by BoosterHandle & DMatrixHandle appropriately:

1 #include <assert.h>
2 #include <stdio.h>
3 #include <stdlib.h>
4 #include <xgboost/c_api.h>
5

6 int main(int argc, char** argv) {
7 int silent = 0;
8

9 BoosterHandle booster;
10

11 // do something with booster
12

13 //free the memory
(continues on next page)
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(continued from previous page)

14 XGBoosterFree(booster)
15

16 DMatrixHandle DMatrixHandle_param;
17

18 // do something with DMatrixHandle_param
19

20 // free the memory
21 XGDMatrixFree(DMatrixHandle_param);
22

23 return 0;
24 }

3. For tree models, it is important to use consistent data formats during training and scoring/ predicting otherwise
it will result in wrong outputs. Example if we our training data is in dense matrix format then your prediction
dataset should also be a dense matrix or if training in libsvm format then dataset for prediction should also
be in libsvm format.

4. Always use strings for setting values to the parameters in booster handle object. The paramter value can be of
any data type (e.g. int, char, float, double, etc), but they should always be encoded as strings.

BoosterHandle booster;
XGBoosterSetParam(booster, "paramter_name", "0.1");

Sample examples along with Code snippet to use C API functions

1. If the dataset is available in a file, it can be loaded into a DMatrix object using the XGDMatrixCreateFromFile

DMatrixHandle data; // handle to DMatrix
// Load the dat from file & store it in data variable of DMatrixHandle datatype
safe_xgboost(XGDMatrixCreateFromFile("/path/to/file/filename", silent, &data));

2. You can also create a DMatrix object from a 2D Matrix using the XGDMatrixCreateFromMat function

1 // 1D matrix
2 const int data1[] = { 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,␣

→˓1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 };
3

4 // 2D matrix
5 const int ROWS = 5, COLS = 3;
6 const int data2[ROWS][COLS] = { {1, 2, 3}, {2, 4, 6}, {3, -1, 9}, {4, 8, -1}, {2, 5, 1},

→˓{0, 1, 5} };
7 DMatrixHandle dmatrix1, dmatrix2;
8 // Pass the matrix, no of rows & columns contained in the matrix variable
9 // here '0' represents the missing value in the matrix dataset

10 // dmatrix variable will contain the created DMatrix using it
11 safe_xgboost(XGDMatrixCreateFromMat(data1, 1, 50, 0, &dmatrix));
12 // here -1 represents the missing value in the matrix dataset
13 safe_xgboost(XGDMatrixCreateFromMat(data2, ROWS, COLS, -1, &dmatrix2));

3. Create a Booster object for training & testing on dataset using XGBoosterCreate
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1 BoosterHandle booster;
2 const int eval_dmats_size;
3 // We assume that training and test data have been loaded into 'train' and 'test'
4 DMatrixHandle eval_dmats[eval_dmats_size] = {train, test};
5 safe_xgboost(XGBoosterCreate(eval_dmats, eval_dmats_size, &booster));

4. For each DMatrix object, set the labels using XGDMatrixSetFloatInfo. Later you can access the label using
XGDMatrixGetFloatInfo.

1 const int ROWS=5, COLS=3;
2 const int data[ROWS][COLS] = { {1, 2, 3}, {2, 4, 6}, {3, -1, 9}, {4, 8, -1}, {2, 5, 1},

→˓{0, 1, 5} };
3 DMatrixHandle dmatrix;
4

5 safe_xgboost(XGDMatrixCreateFromMat(data, ROWS, COLS, -1, &dmatrix));
6

7 // variable to store labels for the dataset created from above matrix
8 float labels[ROWS];
9

10 for (int i = 0; i < ROWS; i++) {
11 labels[i] = i;
12 }
13

14 // Loading the labels
15 safe_xgboost(XGDMatrixSetFloatInfo(dmatrix, "label", labels, ROWS));
16

17 // reading the labels and store the length of the result
18 bst_ulong result_len;
19

20 // labels result
21 const float *result;
22

23 safe_xgboost(XGDMatrixGetFloatInfo(dmatrix, "label", &result_len, &result));
24

25 for(unsigned int i = 0; i < result_len; i++) {
26 printf("label[%i] = %f\n", i, result[i]);
27 }

5. Set the parameters for the Booster object according to the requirement using XGBoosterSetParam . Check out
the full list of parameters available here .

1 BoosterHandle booster;
2 safe_xgboost(XGBoosterSetParam(booster, "booster", "gblinear"));
3 // default max_depth =6
4 safe_xgboost(XGBoosterSetParam(booster, "max_depth", "3"));
5 // default eta = 0.3
6 safe_xgboost(XGBoosterSetParam(booster, "eta", "0.1"));

6. Train & evaluate the model using XGBoosterUpdateOneIter and XGBoosterEvalOneIter respectively.

1 int num_of_iterations = 20;
2 const char* eval_names[eval_dmats_size] = {"train", "test"};
3 const char* eval_result = NULL;

(continues on next page)
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(continued from previous page)

4

5 for (int i = 0; i < num_of_iterations; ++i) {
6 // Update the model performance for each iteration
7 safe_xgboost(XGBoosterUpdateOneIter(booster, i, train));
8

9 // Give the statistics for the learner for training & testing dataset in terms of␣
→˓error after each iteration

10 safe_xgboost(XGBoosterEvalOneIter(booster, i, eval_dmats, eval_names, eval_dmats_size,␣
→˓&eval_result));

11 printf("%s\n", eval_result);
12 }

Note: For customized loss function, use XGBoosterBoostOneIter function instead and manually specify the gradient
and 2nd order gradient.

7. Predict the result on a test set using XGBoosterPredict

1 bst_ulong output_length;
2

3 const float *output_result;
4 safe_xgboost(XGBoosterPredict(booster, test, 0, 0, &output_length, &output_result));
5

6 for (unsigned int i = 0; i < output_length; i++){
7 printf("prediction[%i] = %f \n", i, output_result[i]);
8 }

8. Free all the internal structure used in your code using XGDMatrixFree and XGBoosterFree. This step is impor-
tant to prevent memory leak.

safe_xgboost(XGDMatrixFree(dmatrix));
safe_xgboost(XGBoosterFree(booster));

9. Get the number of features in your dataset using XGBoosterGetNumFeature.

1 bst_ulong num_of_features = 0;
2

3 // Assuming booster variable of type BoosterHandle is already declared
4 // and dataset is loaded and trained on booster
5 // storing the results in num_of_features variable
6 safe_xgboost(XGBoosterGetNumFeature(booster, &num_of_features));
7

8 // Printing number of features by type conversion of num_of_features variable from bst_
→˓ulong to unsigned long

9 printf("num_feature: %lu\n", (unsigned long)(num_of_features));

10. Load the model using XGBoosterLoadModel function

1 BoosterHandle booster;
2 const char *model_path = "/path/of/model";
3

4 // create booster handle first
(continues on next page)
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5 safe_xgboost(XGBoosterCreate(NULL, 0, &booster));
6

7 // set the model parameters here
8

9 // load model
10 safe_xgboost(XGBoosterLoadModel(booster, model_path));
11

12 // predict the model here

1.4.14 Text Input Format of DMatrix

Basic Input Format

XGBoost currently supports two text formats for ingesting data: LIBSVM and CSV. The rest of this document will
describe the LIBSVM format. (See this Wikipedia article for a description of the CSV format.). Please be careful
that, XGBoost does not understand file extensions, nor try to guess the file format, as there is no universal agreement
upon file extension of LIBSVM or CSV. Instead it employs URI format for specifying the precise input file type. For
example if you provide a csv file ./data.train.csv as input, XGBoost will blindly use the default LIBSVM parser
to digest it and generate a parser error. Instead, users need to provide an URI in the form of train.csv?format=csv.
For external memory input, the URI should of a form similar to train.csv?format=csv#dtrain.cache. See Data
Interface and Using XGBoost External Memory Version also.

For training or predicting, XGBoost takes an instance file with the format as below:

Listing 18: train.txt

1 101:1.2 102:0.03
0 1:2.1 10001:300 10002:400
0 0:1.3 1:0.3
1 0:0.01 1:0.3
0 0:0.2 1:0.3

Each line represent a single instance, and in the first line ‘1’ is the instance label, ‘101’ and ‘102’ are feature indices,
‘1.2’ and ‘0.03’ are feature values. In the binary classification case, ‘1’ is used to indicate positive samples, and ‘0’ is
used to indicate negative samples. We also support probability values in [0,1] as label, to indicate the probability of
the instance being positive.

1.4. XGBoost Tutorials 79

https://en.wikipedia.org/wiki/Comma-separated_values
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier


xgboost, Release 1.7.6

Auxiliary Files for Additional Information

Note: all information below is applicable only to single-node version of the package. If you’d like to perform
distributed training with multiple nodes, skip to the section Embedding additional information inside LIBSVM file.

Group Input Format

For ranking task, XGBoost supports the group input format. In ranking task, instances are categorized into query
groups in real world scenarios. For example, in the learning to rank web pages scenario, the web page instances are
grouped by their queries. XGBoost requires an file that indicates the group information. For example, if the instance
file is the train.txt shown above, the group file should be named train.txt.group and be of the following format:

Listing 19: train.txt.group

2
3

This means that, the data set contains 5 instances, and the first two instances are in a group and the other three are
in another group. The numbers in the group file are actually indicating the number of instances in each group in the
instance file in order. At the time of configuration, you do not have to indicate the path of the group file. If the instance
file name is xxx, XGBoost will check whether there is a file named xxx.group in the same directory.

Instance Weight File

Instances in the training data may be assigned weights to differentiate relative importance among them. For example,
if we provide an instance weight file for the train.txt file in the example as below:

Listing 20: train.txt.weight

1
0.5
0.5
1
0.5

It means that XGBoost will emphasize more on the first and fourth instance (i.e. the positive instances) while training.
The configuration is similar to configuring the group information. If the instance file name is xxx, XGBoost will look
for a file named xxx.weight in the same directory. If the file exists, the instance weights will be extracted and used at
the time of training.

Note: Binary buffer format and instance weights

If you choose to save the training data as a binary buffer (using save_binary()), keep in mind that the resulting binary
buffer file will include the instance weights. To update the weights, use the set_weight() function.

80 Chapter 1. Contents

https://github.com/dmlc/xgboost/tree/master/demo/rank


xgboost, Release 1.7.6

Initial Margin File

XGBoost supports providing each instance an initial margin prediction. For example, if we have a initial prediction
using logistic regression for train.txt file, we can create the following file:

Listing 21: train.txt.base_margin

-0.4
1.0
3.4

XGBoost will take these values as initial margin prediction and boost from that. An important note about base_margin
is that it should be margin prediction before transformation, so if you are doing logistic loss, you will need to put in
value before logistic transformation. If you are using XGBoost predictor, use pred_margin=1 to output margin values.

Embedding additional information inside LIBSVM file

This section is applicable to both single- and multiple-node settings.

Query ID Columns

This is most useful for ranking task, where the instances are grouped into query groups. You may embed query group
ID for each instance in the LIBSVM file by adding a token of form qid:xx in each row:

Listing 22: train.txt

1 qid:1 101:1.2 102:0.03
0 qid:1 1:2.1 10001:300 10002:400
0 qid:2 0:1.3 1:0.3
1 qid:2 0:0.01 1:0.3
0 qid:3 0:0.2 1:0.3
1 qid:3 3:-0.1 10:-0.3
0 qid:3 6:0.2 10:0.15

Keep in mind the following restrictions:

• You are not allowed to specify query ID’s for some instances but not for others. Either every row is assigned
query ID’s or none at all.

• The rows have to be sorted in ascending order by the query IDs. So, for instance, you may not have one row
having large query ID than any of the following rows.

Instance weights

You may specify instance weights in the LIBSVM file by appending each instance label with the corresponding weight
in the form of [label]:[weight], as shown by the following example:

Listing 23: train.txt

1:1.0 101:1.2 102:0.03
0:0.5 1:2.1 10001:300 10002:400
0:0.5 0:1.3 1:0.3

(continues on next page)
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1:1.0 0:0.01 1:0.3
0:0.5 0:0.2 1:0.3

where the negative instances are assigned half weights compared to the positive instances.

1.4.15 Notes on Parameter Tuning

Parameter tuning is a dark art in machine learning, the optimal parameters of a model can depend on many scenarios.
So it is impossible to create a comprehensive guide for doing so.

This document tries to provide some guideline for parameters in XGBoost.

Understanding Bias-Variance Tradeoff

If you take a machine learning or statistics course, this is likely to be one of the most important concepts. When we
allow the model to get more complicated (e.g. more depth), the model has better ability to fit the training data, resulting
in a less biased model. However, such complicated model requires more data to fit.

Most of parameters in XGBoost are about bias variance tradeoff. The best model should trade the model complexity
with its predictive power carefully. Parameters Documentation will tell you whether each parameter will make the
model more conservative or not. This can be used to help you turn the knob between complicated model and simple
model.

Control Overfitting

When you observe high training accuracy, but low test accuracy, it is likely that you encountered overfitting problem.

There are in general two ways that you can control overfitting in XGBoost:

• The first way is to directly control model complexity.

– This includes max_depth, min_child_weight and gamma.

• The second way is to add randomness to make training robust to noise.

– This includes subsample and colsample_bytree.

– You can also reduce stepsize eta. Remember to increase num_round when you do so.

Faster training performance

There’s a parameter called tree_method, set it to hist or gpu_hist for faster computation.

Handle Imbalanced Dataset

For common cases such as ads clickthrough log, the dataset is extremely imbalanced. This can affect the training of
XGBoost model, and there are two ways to improve it.

• If you care only about the overall performance metric (AUC) of your prediction

– Balance the positive and negative weights via scale_pos_weight

– Use AUC for evaluation

• If you care about predicting the right probability
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– In such a case, you cannot re-balance the dataset

– Set parameter max_delta_step to a finite number (say 1) to help convergence

1.4.16 Using XGBoost External Memory Version

XGBoost supports loading data from external memory using builtin data parser. And starting from version 1.5, users
can also define a custom iterator to load data in chunks. The feature is still experimental and not yet ready for production
use. In this tutorial we will introduce both methods. Please note that training on data from external memory is not
supported by exact tree method.

Data Iterator

Starting from XGBoost 1.5, users can define their own data loader using Python or C interface. There are some examples
in the demo directory for quick start. This is a generalized version of text input external memory, where users no longer
need to prepare a text file that XGBoost recognizes. To enable the feature, user need to define a data iterator with 2
class methods next and reset then pass it into DMatrix constructor.

import os
from typing import List, Callable
import xgboost
from sklearn.datasets import load_svmlight_file

class Iterator(xgboost.DataIter):
def __init__(self, svm_file_paths: List[str]):
self._file_paths = svm_file_paths
self._it = 0
# XGBoost will generate some cache files under current directory with the prefix
# "cache"
super().__init__(cache_prefix=os.path.join(".", "cache"))

def next(self, input_data: Callable):
"""Advance the iterator by 1 step and pass the data to XGBoost. This function is
called by XGBoost during the construction of ``DMatrix``

"""
if self._it == len(self._file_paths):
# return 0 to let XGBoost know this is the end of iteration
return 0

# input_data is a function passed in by XGBoost who has the exact same signature of
# ``DMatrix``
X, y = load_svmlight_file(self._file_paths[self._it])
input_data(X, y)
self._it += 1
# Return 1 to let XGBoost know we haven't seen all the files yet.
return 1

def reset(self):
"""Reset the iterator to its beginning"""
self._it = 0

(continues on next page)
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it = Iterator(["file_0.svm", "file_1.svm", "file_2.svm"])
Xy = xgboost.DMatrix(it)

# Other tree methods including ``hist`` and ``gpu_hist`` also work, but has some caveats
# as noted in following sections.
booster = xgboost.train({"tree_method": "approx"}, Xy)

The above snippet is a simplifed version of demo/guide-python/external_memory.py. For an example in C,
please see demo/c-api/external-memory/.

Text File Inputs

There is no big difference between using external memory version and in-memory version. The only difference is the
filename format.

The external memory version takes in the following URI format:

filename#cacheprefix

The filename is the normal path to LIBSVM format file you want to load in, and cacheprefix is a path to a cache
file that XGBoost will use for caching preprocessed data in binary form.

To load from csv files, use the following syntax:

filename.csv?format=csv&label_column=0#cacheprefix

where label_column should point to the csv column acting as the label.

To provide a simple example for illustration, extracting the code from demo/guide-python/external_memory.py. If you
have a dataset stored in a file similar to agaricus.txt.train with LIBSVM format, the external memory support
can be enabled by:

dtrain = DMatrix('../data/agaricus.txt.train#dtrain.cache')

XGBoost will first load agaricus.txt.train in, preprocess it, then write to a new file named dtrain.cache as an
on disk cache for storing preprocessed data in an internal binary format. For more notes about text input formats, see
Text Input Format of DMatrix.

For CLI version, simply add the cache suffix, e.g. "../data/agaricus.txt.train#dtrain.cache".

GPU Version (GPU Hist tree method)

External memory is supported in GPU algorithms (i.e. when tree_method is set to gpu_hist).

If you are still getting out-of-memory errors after enabling external memory, try subsampling the data to further reduce
GPU memory usage:

param = {
...
'subsample': 0.1,
'sampling_method': 'gradient_based',

}
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For more information, see this paper. Internally the tree method still concatenate all the chunks into 1 final histogram
index due to performance reason, but in compressed format. So its scalability has an upper bound but still has lower
memory cost in general.

CPU Version

For CPU histogram based tree methods (approx, hist) it’s recommended to use grow_policy=depthwise for per-
formance reason. Iterating over data batches is slow, with depthwise policy XGBoost can build a entire layer of tree
nodes with a few iterations, while with lossguide XGBoost needs to iterate over the data set for each tree node.

1.4.17 Custom Objective and Evaluation Metric

Contents

• Overview

• Customized Objective Function

• Customized Metric Function

• Reverse Link Function

• Scikit-Learn Interface

Overview

XGBoost is designed to be an extensible library. One way to extend it is by providing our own objective function for
training and corresponding metric for performance monitoring. This document introduces implementing a customized
elementwise evaluation metric and objective for XGBoost. Although the introduction uses Python for demonstration,
the concepts should be readily applicable to other language bindings.

Note:

• The ranking task does not support customized functions.

• Breaking change was made in XGBoost 1.6.

In the following two sections, we will provide a step by step walk through of implementing the Squared Log Error
(SLE) objective function:

1

2
[𝑙𝑜𝑔(𝑝𝑟𝑒𝑑+ 1)− 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2

and its default metric Root Mean Squared Log Error(RMSLE):√︂
1

𝑁
[𝑙𝑜𝑔(𝑝𝑟𝑒𝑑+ 1)− 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2

Although XGBoost has native support for said functions, using it for demonstration provides us the opportunity of
comparing the result from our own implementation and the one from XGBoost internal for learning purposes. After
finishing this tutorial, we should be able to provide our own functions for rapid experiments. And at the end, we
will provide some notes on non-identy link function along with examples of using custom metric and objective with
scikit-learn interface. with scikit-learn interface.
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Customized Objective Function

During model training, the objective function plays an important role: provide gradient information, both first and
second order gradient, based on model predictions and observed data labels (or targets). Therefore, a valid objective
function should accept two inputs, namely prediction and labels. For implementing SLE, we define:

import numpy as np
import xgboost as xgb
from typing import Tuple

def gradient(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
'''Compute the gradient squared log error.'''
y = dtrain.get_label()
return (np.log1p(predt) - np.log1p(y)) / (predt + 1)

def hessian(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
'''Compute the hessian for squared log error.'''
y = dtrain.get_label()
return ((-np.log1p(predt) + np.log1p(y) + 1) /

np.power(predt + 1, 2))

def squared_log(predt: np.ndarray,
dtrain: xgb.DMatrix) -> Tuple[np.ndarray, np.ndarray]:

'''Squared Log Error objective. A simplified version for RMSLE used as
objective function.
'''
predt[predt < -1] = -1 + 1e-6
grad = gradient(predt, dtrain)
hess = hessian(predt, dtrain)
return grad, hess

In the above code snippet, squared_log is the objective function we want. It accepts a numpy array predt as model
prediction, and the training DMatrix for obtaining required information, including labels and weights (not used here).
This objective is then used as a callback function for XGBoost during training by passing it as an argument to xgb.
train:

xgb.train({'tree_method': 'hist', 'seed': 1994}, # any other tree method is fine.
dtrain=dtrain,
num_boost_round=10,
obj=squared_log)

Notice that in our definition of the objective, whether we subtract the labels from the prediction or the other way around
is important. If you find the training error goes up instead of down, this might be the reason.
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Customized Metric Function

So after having a customized objective, we might also need a corresponding metric to monitor our model’s performance.
As mentioned above, the default metric for SLE is RMSLE. Similarly we define another callback like function as the new
metric:

def rmsle(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
''' Root mean squared log error metric.'''
y = dtrain.get_label()
predt[predt < -1] = -1 + 1e-6
elements = np.power(np.log1p(y) - np.log1p(predt), 2)
return 'PyRMSLE', float(np.sqrt(np.sum(elements) / len(y)))

Since we are demonstrating in Python, the metric or objective need not be a function, any callable object should suffice.
Similar to the objective function, our metric also accepts predt and dtrain as inputs, but returns the name of the metric
itself and a floating point value as the result. After passing it into XGBoost as argument of feval parameter:

xgb.train({'tree_method': 'hist', 'seed': 1994,
'disable_default_eval_metric': 1},
dtrain=dtrain,
num_boost_round=10,
obj=squared_log,
feval=rmsle,
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
evals_result=results)

We will be able to see XGBoost printing something like:

[0] dtrain-PyRMSLE:1.37153 dtest-PyRMSLE:1.31487
[1] dtrain-PyRMSLE:1.26619 dtest-PyRMSLE:1.20899
[2] dtrain-PyRMSLE:1.17508 dtest-PyRMSLE:1.11629
[3] dtrain-PyRMSLE:1.09836 dtest-PyRMSLE:1.03871
[4] dtrain-PyRMSLE:1.03557 dtest-PyRMSLE:0.977186
[5] dtrain-PyRMSLE:0.985783 dtest-PyRMSLE:0.93057
...

Notice that the parameter disable_default_eval_metric is used to suppress the default metric in XGBoost.

For fully reproducible source code and comparison plots, see Demo for defining a custom regression objective and
metric.

Reverse Link Function

When using builtin objective, the raw prediction is transformed according to the objective function. When a custom
objective is provided XGBoost doesn’t know its link function so the user is responsible for making the transformation
for both objective and custom evaluation metric. For objective with identiy link like squared error this is trivial,
but for other link functions like log link or inverse link the difference is significant.

For the Python package, the behaviour of prediction can be controlled by the output_margin parameter in predict
function. When using the custom_metric parameter without a custom objective, the metric function will receive
transformed prediction since the objective is defined by XGBoost. However, when the custom objective is also provided
along with that metric, then both the objective and custom metric will recieve raw prediction. The following example
provides a comparison between two different behavior with a multi-class classification model. Firstly we define 2
different Python metric functions implementing the same underlying metric for comparison, merror_with_transform
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is used when custom objective is also used, otherwise the simpler merror is preferred since XGBoost can perform the
transformation itself.

import xgboost as xgb
import numpy as np

def merror_with_transform(predt: np.ndarray, dtrain: xgb.DMatrix):
"""Used when custom objective is supplied."""
y = dtrain.get_label()
n_classes = predt.size // y.shape[0]
# Like custom objective, the predt is untransformed leaf weight when custom objective
# is provided.

# With the use of `custom_metric` parameter in train function, custom metric receives
# raw input only when custom objective is also being used. Otherwise custom metric
# will receive transformed prediction.
assert predt.shape == (d_train.num_row(), n_classes)
out = np.zeros(dtrain.num_row())
for r in range(predt.shape[0]):

i = np.argmax(predt[r])
out[r] = i

assert y.shape == out.shape

errors = np.zeros(dtrain.num_row())
errors[y != out] = 1.0
return 'PyMError', np.sum(errors) / dtrain.num_row()

The above function is only needed when we want to use custom objective and XGBoost doesn’t know how to transform
the prediction. The normal implementation for multi-class error function is:

def merror(predt: np.ndarray, dtrain: xgb.DMatrix):
"""Used when there's no custom objective."""
# No need to do transform, XGBoost handles it internally.
errors = np.zeros(dtrain.num_row())
errors[y != out] = 1.0
return 'PyMError', np.sum(errors) / dtrain.num_row()

Next we need the custom softprob objective:

def softprob_obj(predt: np.ndarray, data: xgb.DMatrix):
"""Loss function. Computing the gradient and approximated hessian (diagonal).
Reimplements the `multi:softprob` inside XGBoost.
"""

# Full implementation is available in the Python demo script linked below
...

return grad, hess

Lastly we can train the model using obj and custom_metric parameters:

Xy = xgb.DMatrix(X, y)
booster = xgb.train(

(continues on next page)
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{"num_class": kClasses, "disable_default_eval_metric": True},
m,
num_boost_round=kRounds,
obj=softprob_obj,
custom_metric=merror_with_transform,
evals_result=custom_results,
evals=[(m, "train")],

)

Or if you don’t need the custom objective and just want to supply a metric that’s not available in XGBoost:

booster = xgb.train(
{

"num_class": kClasses,
"disable_default_eval_metric": True,
"objective": "multi:softmax",

},
m,
num_boost_round=kRounds,
# Use a simpler metric implementation.
custom_metric=merror,
evals_result=custom_results,
evals=[(m, "train")],

)

We use multi:softmax to illustrate the differences of transformed prediction. With softprob the output prediction
array has shape (n_samples, n_classes)while for softmax it’s (n_samples, ). A demo for multi-class objective
function is also available at Demo for creating customized multi-class objective function.

Scikit-Learn Interface

The scikit-learn interface of XGBoost has some utilities to improve the integration with standard scikit-learn functions.
For instance, after XGBoost 1.6.0 users can use the cost function (not scoring functions) from scikit-learn out of the
box:

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

Also, for custom objective function, users can define the objective without having to access DMatrix:

def softprob_obj(labels: np.ndarray, predt: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
rows = labels.shape[0]
grad = np.zeros((rows, classes), dtype=float)
hess = np.zeros((rows, classes), dtype=float)
eps = 1e-6
for r in range(predt.shape[0]):

(continues on next page)

1.4. XGBoost Tutorials 89



xgboost, Release 1.7.6

(continued from previous page)

target = labels[r]
p = softmax(predt[r, :])
for c in range(predt.shape[1]):

g = p[c] - 1.0 if c == target else p[c]
h = max((2.0 * p[c] * (1.0 - p[c])).item(), eps)
grad[r, c] = g
hess[r, c] = h

grad = grad.reshape((rows * classes, 1))
hess = hess.reshape((rows * classes, 1))
return grad, hess

clf = xgb.XGBClassifier(tree_method="hist", objective=softprob_obj)

1.4.18 Categorical Data

Note: As of XGBoost 1.6, the feature is experimental and has limited features

Starting from version 1.5, XGBoost has experimental support for categorical data available for public testing. For
numerical data, the split condition is defined as 𝑣𝑎𝑙𝑢𝑒 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, while for categorical data the split is defined
depending on whether partitioning or onehot encoding is used. For partition-based splits, the splits are specified as
𝑣𝑎𝑙𝑢𝑒 ∈ 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠, where categories is the set of categories in one feature. If onehot encoding is used instead,
then the split is defined as 𝑣𝑎𝑙𝑢𝑒 == 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦. More advanced categorical split strategy is planned for future releases
and this tutorial details how to inform XGBoost about the data type.

Training with scikit-learn Interface

The easiest way to pass categorical data into XGBoost is using dataframe and the scikit-learn interface like
XGBClassifier. For preparing the data, users need to specify the data type of input predictor as category. For
pandas/cudf Dataframe, this can be achieved by

X["cat_feature"].astype("category")

for all columns that represent categorical features. After which, users can tell XGBoost to enable training with cat-
egorical data. Assuming that you are using the XGBClassifier for classification problem, specify the parameter
enable_categorical:

# Supported tree methods are `gpu_hist`, `approx`, and `hist`.
clf = xgb.XGBClassifier(tree_method="gpu_hist", enable_categorical=True)
# X is the dataframe we created in previous snippet
clf.fit(X, y)
# Must use JSON/UBJSON for serialization, otherwise the information is lost.
clf.save_model("categorical-model.json")

Once training is finished, most of other features can utilize the model. For instance one can plot the model and calculate
the global feature importance:

# Get a graph
graph = xgb.to_graphviz(clf, num_trees=1)

(continues on next page)
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# Or get a matplotlib axis
ax = xgb.plot_tree(clf, num_trees=1)
# Get feature importances
clf.feature_importances_

The scikit-learn interface from dask is similar to single node version. The basic idea is create dataframe with
category feature type, and tell XGBoost to use it by setting the enable_categorical parameter. See Getting started
with categorical data for a worked example of using categorical data with scikit-learn interface with one-hot
encoding. A comparison between using one-hot encoded data and XGBoost’s categorical data support can be found
Train XGBoost with cat_in_the_dat dataset.

Optimal Partitioning

New in version 1.6.

Optimal partitioning is a technique for partitioning the categorical predictors for each node split, the proof of optimality
for numerical output was first introduced by [1]. The algorithm is used in decision trees [2], later LightGBM [3]
brought it to the context of gradient boosting trees and now is also adopted in XGBoost as an optional feature for
handling categorical splits. More specifically, the proof by Fisher [1] states that, when trying to partition a set of
discrete values into groups based on the distances between a measure of these values, one only needs to look at sorted
partitions instead of enumerating all possible permutations. In the context of decision trees, the discrete values are
categories, and the measure is the output leaf value. Intuitively, we want to group the categories that output similar leaf
values. During split finding, we first sort the gradient histogram to prepare the contiguous partitions then enumerate
the splits according to these sorted values. One of the related parameters for XGBoost is max_cat_to_onehot, which
controls whether one-hot encoding or partitioning should be used for each feature, see Parameters for Categorical
Feature for details.

Using native interface

The scikit-learn interface is user friendly, but lacks some features that are only available in native interface. For
instance users cannot compute SHAP value directly or use quantized DMatrix. Also native interface supports data
types other than dataframe, like numpy/cupy array. To use the native interface with categorical data, we need to
pass the similar parameter to DMatrix and the train function. For dataframe input:

# X is a dataframe we created in previous snippet
Xy = xgb.DMatrix(X, y, enable_categorical=True)
booster = xgb.train({"tree_method": "hist", "max_cat_to_onehot": 5}, Xy)
# Must use JSON for serialization, otherwise the information is lost
booster.save_model("categorical-model.json")

SHAP value computation:

SHAP = booster.predict(Xy, pred_interactions=True)

# categorical features are listed as "c"
print(booster.feature_types)

For other types of input, like numpy array, we can tell XGBoost about the feature types by using the feature_types
parameter in DMatrix:

# "q" is numerical feature, while "c" is categorical feature
ft = ["q", "c", "c"]

(continues on next page)
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X: np.ndarray = load_my_data()
assert X.shape[1] == 3
Xy = xgb.DMatrix(X, y, feature_types=ft, enable_categorical=True)

For numerical data, the feature type can be "q" or "float", while for categorical feature it’s specified as "c". The
Dask module in XGBoost has the same interface so dask.Array can also be used for categorical data.

Miscellaneous

By default, XGBoost assumes input categories are integers starting from 0 till the number of categories
[0, 𝑛_𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑒𝑠). However, user might provide inputs with invalid values due to mistakes or missing values in training
dataset. It can be negative value, integer values that can not be accurately represented by 32-bit floating point, or values
that are larger than actual number of unique categories. During training this is validated but for prediction it’s treated
as the same as not-chosen category for performance reasons.
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1.4.19 Multiple Outputs

New in version 1.6.

Starting from version 1.6, XGBoost has experimental support for multi-output regression and multi-label classifica-
tion with Python package. Multi-label classification usually refers to targets that have multiple non-exclusive class
labels. For instance, a movie can be simultaneously classified as both sci-fi and comedy. For detailed explanation of
terminologies related to different multi-output models please refer to the scikit-learn user guide.

Internally, XGBoost builds one model for each target similar to sklearn meta estimators, with the added benefit of
reusing data and other integrated features like SHAP. For a worked example of regression, see A demo for multi-
output regression. For multi-label classification, the binary relevance strategy is used. Input y should be of shape
(n_samples, n_classes) with each column having a value of 0 or 1 to specify whether the sample is labeled as
positive for respective class. Given a sample with 3 output classes and 2 labels, the corresponding y should be encoded
as [1, 0, 1] with the second class labeled as negative and the rest labeled as positive. At the moment XGBoost
supports only dense matrix for labels.

from sklearn.datasets import make_multilabel_classification
import numpy as np

X, y = make_multilabel_classification(
n_samples=32, n_classes=5, n_labels=3, random_state=0

)
clf = xgb.XGBClassifier(tree_method="hist")

(continues on next page)
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(continued from previous page)

clf.fit(X, y)
np.testing.assert_allclose(clf.predict(X), y)

The feature is still under development with limited support from objectives and metrics.

1.5 Frequently Asked Questions

This document contains frequently asked questions about XGBoost.

1.5.1 How to tune parameters

See Parameter Tuning Guide.

1.5.2 Description on the model

See Introduction to Boosted Trees.

1.5.3 I have a big dataset

XGBoost is designed to be memory efficient. Usually it can handle problems as long as the data fit into your memory.
This usually means millions of instances. If you are running out of memory, checkout external memory version or
distributed version of XGBoost.

1.5.4 Running XGBoost on platform X (Hadoop/Yarn, Mesos)

The distributed version of XGBoost is designed to be portable to various environment. Distributed XGBoost can be
ported to any platform that supports rabit. You can directly run XGBoost on Yarn. In theory Mesos and other resource
allocation engines can be easily supported as well.

1.5.5 Why not implement distributed XGBoost on top of X (Spark, Hadoop)?

The first fact we need to know is going distributed does not necessarily solve all the problems. Instead, it creates more
problems such as more communication overhead and fault tolerance. The ultimate question will still come back to how
to push the limit of each computation node and use less resources to complete the task (thus with less communication
and chance of failure).

To achieve these, we decide to reuse the optimizations in the single node XGBoost and build the distributed version
on top of it. The demand of communication in machine learning is rather simple, in the sense that we can depend on a
limited set of APIs (in our case rabit). Such design allows us to reuse most of the code, while being portable to major
platforms such as Hadoop/Yarn, MPI, SGE. Most importantly, it pushes the limit of the computation resources we can
use.
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1.5.6 How can I port a model to my own system?

The model and data format of XGBoost is exchangeable, which means the model trained by one language can be loaded
in another. This means you can train the model using R, while running prediction using Java or C++, which are more
common in production systems. You can also train the model using distributed versions, and load them in from Python
to do some interactive analysis.

1.5.7 Do you support LambdaMART?

Yes, XGBoost implements LambdaMART. Checkout the objective section in parameters.

1.5.8 How to deal with missing values

XGBoost supports missing values by default. In tree algorithms, branch directions for missing values are learned during
training. Note that the gblinear booster treats missing values as zeros.

When the missing parameter is specifed, values in the input predictor that is equal to missing will be treated as
missing and removed. By default it’s set to NaN.

1.5.9 Slightly different result between runs

This could happen, due to non-determinism in floating point summation order and multi-threading. Though the general
accuracy will usually remain the same.

1.5.10 Why do I see different results with sparse and dense data?

“Sparse” elements are treated as if they were “missing” by the tree booster, and as zeros by the linear booster. For tree
models, it is important to use consistent data formats during training and scoring.

1.6 XGBoost GPU Support

This page contains information about GPU algorithms supported in XGBoost.

Note: CUDA 11.0, Compute Capability 5.0 required (See this list to look up compute capability of your GPU card.)

1.6.1 CUDA Accelerated Tree Construction Algorithms

Most of the algorithms in XGBoost including training, prediction and evaluation can be accelerated with CUDA-capable
GPUs.
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Usage

Specify the tree_method parameter as gpu_hist. For details around the tree_method parameter, see tree method.

Supported parameters

GPU accelerated prediction is enabled by default for the above mentioned tree_method parameters but can be switched
to CPU prediction by setting predictor to cpu_predictor. This could be useful if you want to conserve GPU
memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting predictor to
gpu_predictor.

The device ordinal (which GPU to use if you have many of them) can be selected using the gpu_id parameter, which
defaults to 0 (the first device reported by CUDA runtime).

The GPU algorithms currently work with CLI, Python, R, and JVM packages. See Installation Guide for details.

Listing 24: Python example

param['gpu_id'] = 0
param['tree_method'] = 'gpu_hist'

Listing 25: With Scikit-Learn interface

XGBRegressor(tree_method='gpu_hist', gpu_id=0)

GPU-Accelerated SHAP values

XGBoost makes use of GPUTreeShap as a backend for computing shap values when the GPU predictor is selected.

model.set_param({"predictor": "gpu_predictor"})
shap_values = model.predict(dtrain, pred_contribs=True)
shap_interaction_values = model.predict(dtrain, pred_interactions=True)

See examples here.

Multi-node Multi-GPU Training

XGBoost supports fully distributed GPU training using Dask, Spark and PySpark. For getting started with Dask
see our tutorial Distributed XGBoost with Dask and worked examples here, also Python documentation Dask API for
complete reference. For usage with Spark using Scala see XGBoost4J-Spark-GPU Tutorial (version 1.6.1+). Lastly
for distributed GPU training with PySpark, see Distributed XGBoost with PySpark.

Memory usage

The following are some guidelines on the device memory usage of the gpu_hist tree method.

Memory inside xgboost training is generally allocated for two reasons - storing the dataset and working memory.

The dataset itself is stored on device in a compressed ELLPACK format. The ELLPACK format is a type of sparse ma-
trix that stores elements with a constant row stride. This format is convenient for parallel computation when compared
to CSR because the row index of each element is known directly from its address in memory. The disadvantage of the
ELLPACK format is that it becomes less memory efficient if the maximum row length is significantly more than the
average row length. Elements are quantised and stored as integers. These integers are compressed to a minimum bit
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length. Depending on the number of features, we usually don’t need the full range of a 32 bit integer to store elements
and so compress this down. The compressed, quantised ELLPACK format will commonly use 1/4 the space of a CSR
matrix stored in floating point.

Working memory is allocated inside the algorithm proportional to the number of rows to keep track of gradients, tree
positions and other per row statistics. Memory is allocated for histogram bins proportional to the number of bins,
number of features and nodes in the tree. For performance reasons we keep histograms in memory from previous
nodes in the tree, when a certain threshold of memory usage is passed we stop doing this to conserve memory at some
performance loss.

If you are getting out-of-memory errors on a big dataset, try the or xgboost.QuantileDMatrix or external mem-
ory version. Note that when external memory is used for GPU hist, it’s best to employ gradient based sampling
as well. Last but not least, inplace_predict can be preferred over predict when data is already on GPU. Both
QuantileDMatrix and inplace_predict are automatically enabled if you are using the scikit-learn interface.

Developer notes

The application may be profiled with annotations by specifying USE_NTVX to cmake. Regions covered by the ‘Mon-
itor’ class in CUDA code will automatically appear in the nsight profiler when verbosity is set to 3.

1.6.2 References

Mitchell R, Frank E. (2017) Accelerating the XGBoost algorithm using GPU computing. PeerJ Computer Science
3:e127 https://doi.org/10.7717/peerj-cs.127

NVIDIA Parallel Forall: Gradient Boosting, Decision Trees and XGBoost with CUDA

Out-of-Core GPU Gradient Boosting

Contributors

Many thanks to the following contributors (alphabetical order):

• Andrey Adinets

• Jiaming Yuan

• Jonathan C. McKinney

• Matthew Jones

• Philip Cho

• Rong Ou

• Rory Mitchell

• Shankara Rao Thejaswi Nanditale

• Sriram Chandramouli

• Vinay Deshpande

Please report bugs to the XGBoost issues list: https://github.com/dmlc/xgboost/issues. For general questions please
visit our user form: https://discuss.xgboost.ai/.
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1.7 XGBoost Parameters

Before running XGBoost, we must set three types of parameters: general parameters, booster parameters and task
parameters.

• General parameters relate to which booster we are using to do boosting, commonly tree or linear model

• Booster parameters depend on which booster you have chosen

• Learning task parameters decide on the learning scenario. For example, regression tasks may use different
parameters with ranking tasks.

• Command line parameters relate to behavior of CLI version of XGBoost.

Note: Parameters in R package

In R-package, you can use . (dot) to replace underscore in the parameters, for example, you can use max.depth to
indicate max_depth. The underscore parameters are also valid in R.

• Global Configuration

• General Parameters

– Parameters for Tree Booster

– Parameters for Categorical Feature

– Additional parameters for Dart Booster (booster=dart)

– Parameters for Linear Booster (booster=gblinear)

• Learning Task Parameters

– Parameters for Tweedie Regression (objective=reg:tweedie)

– Parameter for using Pseudo-Huber (reg:pseudohubererror)

• Command Line Parameters

1.7.1 Global Configuration

The following parameters can be set in the global scope, using xgboost.config_context() (Python) or xgb.set.
config() (R).

• verbosity: Verbosity of printing messages. Valid values of 0 (silent), 1 (warning), 2 (info), and 3 (debug).

• use_rmm: Whether to use RAPIDS Memory Manager (RMM) to allocate GPU memory. This option is only
applicable when XGBoost is built (compiled) with the RMM plugin enabled. Valid values are true and false.
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1.7.2 General Parameters

• booster [default= gbtree ]

– Which booster to use. Can be gbtree, gblinear or dart; gbtree and dart use tree based models while
gblinear uses linear functions.

• verbosity [default=1]

– Verbosity of printing messages. Valid values are 0 (silent), 1 (warning), 2 (info), 3 (debug). Sometimes
XGBoost tries to change configurations based on heuristics, which is displayed as warning message. If
there’s unexpected behaviour, please try to increase value of verbosity.

• validate_parameters [default to false, except for Python, R and CLI interface]

– When set to True, XGBoost will perform validation of input parameters to check whether a parameter is
used or not.

• nthread [default to maximum number of threads available if not set]

– Number of parallel threads used to run XGBoost. When choosing it, please keep thread contention and
hyperthreading in mind.

• disable_default_eval_metric [default= false]

– Flag to disable default metric. Set to 1 or true to disable.

• num_feature [set automatically by XGBoost, no need to be set by user]

– Feature dimension used in boosting, set to maximum dimension of the feature

Parameters for Tree Booster

• eta [default=0.3, alias: learning_rate]

– Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the
weights of new features, and eta shrinks the feature weights to make the boosting process more conserva-
tive.

– range: [0,1]

• gamma [default=0, alias: min_split_loss]

– Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma
is, the more conservative the algorithm will be.

– range: [0,∞]

• max_depth [default=6]

– Maximum depth of a tree. Increasing this value will make the model more complex and more likely to
overfit. 0 indicates no limit on depth. Beware that XGBoost aggressively consumes memory when training
a deep tree. exact tree method requires non-zero value.

– range: [0,∞]

• min_child_weight [default=1]

– Minimum sum of instance weight (hessian) needed in a child. If the tree partition step results in a leaf
node with the sum of instance weight less than min_child_weight, then the building process will give
up further partitioning. In linear regression task, this simply corresponds to minimum number of instances
needed to be in each node. The larger min_child_weight is, the more conservative the algorithm will be.

– range: [0,∞]
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• max_delta_step [default=0]

– Maximum delta step we allow each leaf output to be. If the value is set to 0, it means there is no constraint.
If it is set to a positive value, it can help making the update step more conservative. Usually this parameter
is not needed, but it might help in logistic regression when class is extremely imbalanced. Set it to value
of 1-10 might help control the update.

– range: [0,∞]

• subsample [default=1]

– Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample
half of the training data prior to growing trees. and this will prevent overfitting. Subsampling will occur
once in every boosting iteration.

– range: (0,1]

• sampling_method [default= uniform]

– The method to use to sample the training instances.

– uniform: each training instance has an equal probability of being selected. Typically set subsample >=
0.5 for good results.

– gradient_based: the selection probability for each training instance is proportional to the regularized
absolute value of gradients (more specifically,

√︀
𝑔2 + 𝜆ℎ2). subsamplemay be set to as low as 0.1 without

loss of model accuracy. Note that this sampling method is only supported when tree_method is set to
gpu_hist; other tree methods only support uniform sampling.

• colsample_bytree, colsample_bylevel, colsample_bynode [default=1]

– This is a family of parameters for subsampling of columns.

– All colsample_by* parameters have a range of (0, 1], the default value of 1, and specify the fraction of
columns to be subsampled.

– colsample_bytree is the subsample ratio of columns when constructing each tree. Subsampling occurs
once for every tree constructed.

– colsample_bylevel is the subsample ratio of columns for each level. Subsampling occurs once for every
new depth level reached in a tree. Columns are subsampled from the set of columns chosen for the current
tree.

– colsample_bynode is the subsample ratio of columns for each node (split). Subsampling occurs once
every time a new split is evaluated. Columns are subsampled from the set of columns chosen for the
current level.

– colsample_by* parameters work cumulatively. For instance, the combination
{'colsample_bytree':0.5, 'colsample_bylevel':0.5, 'colsample_bynode':0.5} with
64 features will leave 8 features to choose from at each split.

Using the Python or the R package, one can set the feature_weights for DMatrix to define the probability
of each feature being selected when using column sampling. There’s a similar parameter for fit method
in sklearn interface.

• lambda [default=1, alias: reg_lambda]

– L2 regularization term on weights. Increasing this value will make model more conservative.

• alpha [default=0, alias: reg_alpha]

– L1 regularization term on weights. Increasing this value will make model more conservative.

• tree_method string [default= auto]
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– The tree construction algorithm used in XGBoost. See description in the reference paper and Tree Methods.

– XGBoost supports approx, hist and gpu_hist for distributed training. Experimental support for external
memory is available for approx and gpu_hist.

– Choices: auto, exact, approx, hist, gpu_hist, this is a combination of commonly used updaters. For
other updaters like refresh, set the parameter updater directly.

∗ auto: Use heuristic to choose the fastest method.

· For small dataset, exact greedy (exact) will be used.

· For larger dataset, approximate algorithm (approx) will be chosen. It’s recommended to try hist
and gpu_hist for higher performance with large dataset. (gpu_hist)has support for external
memory.

· Because old behavior is always use exact greedy in single machine, user will get a message when
approximate algorithm is chosen to notify this choice.

∗ exact: Exact greedy algorithm. Enumerates all split candidates.

∗ approx: Approximate greedy algorithm using quantile sketch and gradient histogram.

∗ hist: Faster histogram optimized approximate greedy algorithm.

∗ gpu_hist: GPU implementation of hist algorithm.

• scale_pos_weight [default=1]

– Control the balance of positive and negative weights, useful for unbalanced classes. A typical value to con-
sider: sum(negative instances) / sum(positive instances). See Parameters Tuning for more
discussion. Also, see Higgs Kaggle competition demo for examples: R, py1, py2, py3.

• updater

– A comma separated string defining the sequence of tree updaters to run, providing a modular way to con-
struct and to modify the trees. This is an advanced parameter that is usually set automatically, depending
on some other parameters. However, it could be also set explicitly by a user. The following updaters exist:

∗ grow_colmaker: non-distributed column-based construction of trees.

∗ grow_histmaker: distributed tree construction with row-based data splitting based on global proposal
of histogram counting.

∗ grow_quantile_histmaker: Grow tree using quantized histogram.

∗ grow_gpu_hist: Grow tree with GPU.

∗ sync: synchronizes trees in all distributed nodes.

∗ refresh: refreshes tree’s statistics and/or leaf values based on the current data. Note that no random
subsampling of data rows is performed.

∗ prune: prunes the splits where loss < min_split_loss (or gamma) and nodes that have depth greater
than max_depth.

• refresh_leaf [default=1]

– This is a parameter of the refresh updater. When this flag is 1, tree leafs as well as tree nodes’ stats are
updated. When it is 0, only node stats are updated.

• process_type [default= default]

– A type of boosting process to run.

– Choices: default, update
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∗ default: The normal boosting process which creates new trees.

∗ update: Starts from an existing model and only updates its trees. In each boosting iteration, a tree
from the initial model is taken, a specified sequence of updaters is run for that tree, and a modified tree
is added to the new model. The new model would have either the same or smaller number of trees,
depending on the number of boosting iterations performed. Currently, the following built-in updaters
could be meaningfully used with this process type: refresh, prune. With process_type=update,
one cannot use updaters that create new trees.

• grow_policy [default= depthwise]

– Controls a way new nodes are added to the tree.

– Currently supported only if tree_method is set to hist, approx or gpu_hist.

– Choices: depthwise, lossguide

∗ depthwise: split at nodes closest to the root.

∗ lossguide: split at nodes with highest loss change.

• max_leaves [default=0]

– Maximum number of nodes to be added. Not used by exact tree method.

• max_bin, [default=256]

– Only used if tree_method is set to hist, approx or gpu_hist.

– Maximum number of discrete bins to bucket continuous features.

– Increasing this number improves the optimality of splits at the cost of higher computation time.

• predictor, [default= auto]

– The type of predictor algorithm to use. Provides the same results but allows the use of GPU or CPU.

∗ auto: Configure predictor based on heuristics.

∗ cpu_predictor: Multicore CPU prediction algorithm.

∗ gpu_predictor: Prediction using GPU. Used when tree_method is gpu_hist. When predictor
is set to default value auto, the gpu_hist tree method is able to provide GPU based prediction without
copying training data to GPU memory. If gpu_predictor is explicitly specified, then all data is
copied into GPU, only recommended for performing prediction tasks.

• num_parallel_tree, [default=1]

– Number of parallel trees constructed during each iteration. This option is used to support boosted random
forest.

• monotone_constraints

– Constraint of variable monotonicity. See Monotonic Constraints for more information.

• interaction_constraints

– Constraints for interaction representing permitted interactions. The constraints must be specified in the
form of a nest list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of indices of features that
are allowed to interact with each other. See Feature Interaction Constraints for more information.
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Parameters for Categorical Feature

These parameters are only used for training with categorical data. See Categorical Data for more information.

Note: These parameters are experimental. exact tree method is not yet supported.

• max_cat_to_onehot

New in version 1.6.0.

– A threshold for deciding whether XGBoost should use one-hot encoding based split for categorical data.
When number of categories is lesser than the threshold then one-hot encoding is chosen, otherwise the
categories will be partitioned into children nodes.

• max_cat_threshold

New in version 1.7.0.

– Maximum number of categories considered for each split. Used only by partition-based splits for preventing
over-fitting.

Additional parameters for Dart Booster (booster=dart)

Note: Using predict() with DART booster

If the booster object is DART type, predict() will perform dropouts, i.e. only some of the trees will be evalu-
ated. This will produce incorrect results if data is not the training data. To obtain correct results on test sets, set
iteration_range to a nonzero value, e.g.

preds = bst.predict(dtest, iteration_range=(0, num_round))

• sample_type [default= uniform]

– Type of sampling algorithm.

∗ uniform: dropped trees are selected uniformly.

∗ weighted: dropped trees are selected in proportion to weight.

• normalize_type [default= tree]

– Type of normalization algorithm.

∗ tree: new trees have the same weight of each of dropped trees.

· Weight of new trees are 1 / (k + learning_rate).

· Dropped trees are scaled by a factor of k / (k + learning_rate).

∗ forest: new trees have the same weight of sum of dropped trees (forest).

· Weight of new trees are 1 / (1 + learning_rate).

· Dropped trees are scaled by a factor of 1 / (1 + learning_rate).

• rate_drop [default=0.0]

– Dropout rate (a fraction of previous trees to drop during the dropout).

– range: [0.0, 1.0]
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• one_drop [default=0]

– When this flag is enabled, at least one tree is always dropped during the dropout (allows Binomial-plus-one
or epsilon-dropout from the original DART paper).

• skip_drop [default=0.0]

– Probability of skipping the dropout procedure during a boosting iteration.

∗ If a dropout is skipped, new trees are added in the same manner as gbtree.

∗ Note that non-zero skip_drop has higher priority than rate_drop or one_drop.

– range: [0.0, 1.0]

Parameters for Linear Booster (booster=gblinear)

• lambda [default=0, alias: reg_lambda]

– L2 regularization term on weights. Increasing this value will make model more conservative. Normalised
to number of training examples.

• alpha [default=0, alias: reg_alpha]

– L1 regularization term on weights. Increasing this value will make model more conservative. Normalised
to number of training examples.

• updater [default= shotgun]

– Choice of algorithm to fit linear model

∗ shotgun: Parallel coordinate descent algorithm based on shotgun algorithm. Uses ‘hogwild’ paral-
lelism and therefore produces a nondeterministic solution on each run.

∗ coord_descent: Ordinary coordinate descent algorithm. Also multithreaded but still produces a
deterministic solution.

• feature_selector [default= cyclic]

– Feature selection and ordering method

∗ cyclic: Deterministic selection by cycling through features one at a time.

∗ shuffle: Similar to cyclic but with random feature shuffling prior to each update.

∗ random: A random (with replacement) coordinate selector.

∗ greedy: Select coordinate with the greatest gradient magnitude. It has O(num_feature^2) com-
plexity. It is fully deterministic. It allows restricting the selection to top_k features per group with
the largest magnitude of univariate weight change, by setting the top_k parameter. Doing so would
reduce the complexity to O(num_feature*top_k).

∗ thrifty: Thrifty, approximately-greedy feature selector. Prior to cyclic updates, reorders features
in descending magnitude of their univariate weight changes. This operation is multithreaded and is a
linear complexity approximation of the quadratic greedy selection. It allows restricting the selection to
top_k features per group with the largest magnitude of univariate weight change, by setting the top_k
parameter.

• top_k [default=0]

– The number of top features to select in greedy and thrifty feature selector. The value of 0 means using
all the features.
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1.7.3 Learning Task Parameters

Specify the learning task and the corresponding learning objective. The objective options are below:

• objective [default=reg:squarederror]

– reg:squarederror: regression with squared loss.

– reg:squaredlogerror: regression with squared log loss 1
2 [𝑙𝑜𝑔(𝑝𝑟𝑒𝑑+ 1)− 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2. All input

labels are required to be greater than -1. Also, see metric rmsle for possible issue with this objective.

– reg:logistic: logistic regression.

– reg:pseudohubererror: regression with Pseudo Huber loss, a twice differentiable alternative to absolute
loss.

– reg:absoluteerror: Regression with L1 error. When tree model is used, leaf value is refreshed after
tree construction. If used in distributed training, the leaf value is calculated as the mean value from all
workers, which is not guaranteed to be optimal.

– binary:logistic: logistic regression for binary classification, output probability

– binary:logitraw: logistic regression for binary classification, output score before logistic transformation

– binary:hinge: hinge loss for binary classification. This makes predictions of 0 or 1, rather than producing
probabilities.

– count:poisson: Poisson regression for count data, output mean of Poisson distribution.

∗ max_delta_step is set to 0.7 by default in Poisson regression (used to safeguard optimization)

– survival:cox: Cox regression for right censored survival time data (negative values are consid-
ered right censored). Note that predictions are returned on the hazard ratio scale (i.e., as HR =
exp(marginal_prediction) in the proportional hazard function h(t) = h0(t) * HR).

– survival:aft: Accelerated failure time model for censored survival time data. See Survival Analysis
with Accelerated Failure Time for details.

– aft_loss_distribution: Probability Density Function used by survival:aft objective and
aft-nloglik metric.

– multi:softmax: set XGBoost to do multiclass classification using the softmax objective, you also need
to set num_class(number of classes)

– multi:softprob: same as softmax, but output a vector of ndata * nclass, which can be further re-
shaped to ndata * nclass matrix. The result contains predicted probability of each data point belonging
to each class.

– rank:pairwise: Use LambdaMART to perform pairwise ranking where the pairwise loss is minimized

– rank:ndcg: Use LambdaMART to perform list-wise ranking where Normalized Discounted Cumulative
Gain (NDCG) is maximized

– rank:map: Use LambdaMART to perform list-wise ranking where Mean Average Precision (MAP) is
maximized

– reg:gamma: gamma regression with log-link. Output is a mean of gamma distribution. It might be useful,
e.g., for modeling insurance claims severity, or for any outcome that might be gamma-distributed.

– reg:tweedie: Tweedie regression with log-link. It might be useful, e.g., for modeling total loss in insur-
ance, or for any outcome that might be Tweedie-distributed.

• base_score

– The initial prediction score of all instances, global bias
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– The parameter is automatically estimated for selected objectives before training. To disable the estimation,
specify a real number argument.

– For sufficient number of iterations, changing this value will not have too much effect.

• eval_metric [default according to objective]

– Evaluation metrics for validation data, a default metric will be assigned according to objective (rmse for
regression, and logloss for classification, mean average precision for ranking)

– User can add multiple evaluation metrics. Python users: remember to pass the metrics in as list of param-
eters pairs instead of map, so that latter eval_metric won’t override previous one

– The choices are listed below:

∗ rmse: root mean square error

∗ rmsle: root mean square log error:
√︁

1
𝑁 [𝑙𝑜𝑔(𝑝𝑟𝑒𝑑+ 1)− 𝑙𝑜𝑔(𝑙𝑎𝑏𝑒𝑙 + 1)]2. Default metric of

reg:squaredlogerror objective. This metric reduces errors generated by outliers in dataset. But
because log function is employed, rmsle might output nan when prediction value is less than -1. See
reg:squaredlogerror for other requirements.

∗ mae: mean absolute error

∗ mape: mean absolute percentage error

∗ mphe: mean Pseudo Huber error. Default metric of reg:pseudohubererror objective.

∗ logloss: negative log-likelihood

∗ error: Binary classification error rate. It is calculated as #(wrong cases)/#(all cases). For the
predictions, the evaluation will regard the instances with prediction value larger than 0.5 as positive
instances, and the others as negative instances.

∗ error@t: a different than 0.5 binary classification threshold value could be specified by providing a
numerical value through ‘t’.

∗ merror: Multiclass classification error rate. It is calculated as #(wrong cases)/#(all cases).

∗ mlogloss: Multiclass logloss.

∗ auc: Receiver Operating Characteristic Area under the Curve. Available for classification and
learning-to-rank tasks.

· When used with binary classification, the objective should be binary:logistic or similar func-
tions that work on probability.

· When used with multi-class classification, objective should be multi:softprob instead of
multi:softmax, as the latter doesn’t output probability. Also the AUC is calculated by 1-vs-
rest with reference class weighted by class prevalence.

· When used with LTR task, the AUC is computed by comparing pairs of documents to count cor-
rectly sorted pairs. This corresponds to pairwise learning to rank. The implementation has some
issues with average AUC around groups and distributed workers not being well-defined.

· On a single machine the AUC calculation is exact. In a distributed environment the AUC is a
weighted average over the AUC of training rows on each node - therefore, distributed AUC is
an approximation sensitive to the distribution of data across workers. Use another metric in dis-
tributed environments if precision and reproducibility are important.

· When input dataset contains only negative or positive samples, the output is NaN. The behavior is
implementation defined, for instance, scikit-learn returns 0.5 instead.
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∗ aucpr: Area under the PR curve. Available for classification and learning-to-rank tasks.

After XGBoost 1.6, both of the requirements and restrictions for using aucpr in classification problem
are similar to auc. For ranking task, only binary relevance label 𝑦 ∈ [0, 1] is supported. Different from
map (mean average precision), aucpr calculates the interpolated area under precision recall
curve using continuous interpolation.

∗ ndcg: Normalized Discounted Cumulative Gain

∗ map: Mean Average Precision

∗ ndcg@n, map@n: ‘n’ can be assigned as an integer to cut off the top positions in the lists for evaluation.

∗ ndcg-, map-, ndcg@n-, map@n-: In XGBoost, NDCG and MAP will evaluate the score of a list
without any positive samples as 1. By adding “-” in the evaluation metric XGBoost will evaluate these
score as 0 to be consistent under some conditions.

∗ poisson-nloglik: negative log-likelihood for Poisson regression

∗ gamma-nloglik: negative log-likelihood for gamma regression

∗ cox-nloglik: negative partial log-likelihood for Cox proportional hazards regression

∗ gamma-deviance: residual deviance for gamma regression

∗ tweedie-nloglik: negative log-likelihood for Tweedie regression (at a specified value of the
tweedie_variance_power parameter)

∗ aft-nloglik: Negative log likelihood of Accelerated Failure Time model. See Survival Analysis
with Accelerated Failure Time for details.

∗ interval-regression-accuracy: Fraction of data points whose predicted labels fall in the
interval-censored labels. Only applicable for interval-censored data. See Survival Analysis with Ac-
celerated Failure Time for details.

• seed [default=0]

– Random number seed. This parameter is ignored in R package, use set.seed() instead.

• seed_per_iteration [default= false]

– Seed PRNG determnisticly via iterator number.

Parameters for Tweedie Regression (objective=reg:tweedie)

• tweedie_variance_power [default=1.5]

– Parameter that controls the variance of the Tweedie distribution var(y) ~
E(y)^tweedie_variance_power

– range: (1,2)

– Set closer to 2 to shift towards a gamma distribution

– Set closer to 1 to shift towards a Poisson distribution.
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Parameter for using Pseudo-Huber (reg:pseudohubererror)

• huber_slope : A parameter used for Pseudo-Huber loss to define the 𝛿 term. [default = 1.0]

1.7.4 Command Line Parameters

The following parameters are only used in the console version of XGBoost

• num_round

– The number of rounds for boosting

• data

– The path of training data

• test:data

– The path of test data to do prediction

• save_period [default=0]

– The period to save the model. Setting save_period=10 means that for every 10 rounds XGBoost will save
the model. Setting it to 0 means not saving any model during the training.

• task [default= train] options: train, pred, eval, dump

– train: training using data

– pred: making prediction for test:data

– eval: for evaluating statistics specified by eval[name]=filename

– dump: for dump the learned model into text format

• model_in [default=NULL]

– Path to input model, needed for test, eval, dump tasks. If it is specified in training, XGBoost will continue
training from the input model.

• model_out [default=NULL]

– Path to output model after training finishes. If not specified, XGBoost will output files with such names as
0003.model where 0003 is number of boosting rounds.

• model_dir [default= models/]

– The output directory of the saved models during training

• fmap

– Feature map, used for dumping model

• dump_format [default= text] options: text, json

– Format of model dump file

• name_dump [default= dump.txt]

– Name of model dump file

• name_pred [default= pred.txt]

– Name of prediction file, used in pred mode

• pred_margin [default=0]
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– Predict margin instead of transformed probability

1.8 Prediction

There are a number of prediction functions in XGBoost with various parameters. This document attempts to clarify
some of confusions around prediction with a focus on the Python binding, R package is similar when strict_shape
is specified (see below).

1.8.1 Prediction Options

There are a number of different prediction options for the xgboost.Booster.predict() method, ranging from
pred_contribs to pred_leaf. The output shape depends on types of prediction. Also for multi-class classifica-
tion problem, XGBoost builds one tree for each class and the trees for each class are called a “group” of trees, so output
dimension may change due to used model. After 1.4 release, we added a new parameter called strict_shape, one
can set it to True to indicate a more restricted output is desired. Assuming you are using xgboost.Booster, here is
a list of possible returns:

• When using normal prediction with strict_shape set to True:

Output is a 2-dim array with first dimension as rows and second as groups. For regression/survival/ranking/binary
classification this is equivalent to a column vector with shape[1] == 1. But for multi-class with
multi:softprob the number of columns equals to number of classes. If strict_shape is set to False then XG-
Boost might output 1 or 2 dim array.

• When using output_margin to avoid transformation and strict_shape is set to True:

Similar to the previous case, output is a 2-dim array, except for that multi:softmax has equivalent output shape
of multi:softprob due to dropped transformation. If strict shape is set to False then output can have 1 or 2
dim depending on used model.

• When using preds_contribs with strict_shape set to True:

Output is a 3-dim array, with (rows, groups, columns + 1) as shape. Whether approx_contribs is used
does not change the output shape. If the strict shape parameter is not set, it can be a 2 or 3 dimension array
depending on whether multi-class model is being used.

• When using preds_interactions with strict_shape set to True:

Output is a 4-dim array, with (rows, groups, columns + 1, columns + 1) as shape. Like the predict
contribution case, whether approx_contribs is used does not change the output shape. If strict shape is set to
False, it can have 3 or 4 dims depending on the underlying model.

• When using pred_leaf with strict_shape set to True:

Output is a 4-dim array with (n_samples, n_iterations, n_classes, n_trees_in_forest) as shape.
n_trees_in_forest is specified by the numb_parallel_tree during training. When strict shape is set to
False, output is a 2-dim array with last 3 dims concatenated into 1. Also the last dimension is dropped if it eqauls
to 1. When using apply method in scikit learn interface, this is set to False by default.

For R package, when strict_shape is specified, an array is returned, with the same value as Python ex-
cept R array is column-major while Python numpy array is row-major, so all the dimensions are reversed.
For example, for a Python predict_leaf output obtained by having strict_shape=True has 4 dimensions:
(n_samples, n_iterations, n_classes, n_trees_in_forest), while R with strict_shape=TRUE outputs
(n_trees_in_forest, n_classes, n_iterations, n_samples).

Other than these prediction types, there’s also a parameter called iteration_range, which is similar to model slicing.
But instead of actually splitting up the model into multiple stacks, it simply returns the prediction formed by the trees

108 Chapter 1. Contents



xgboost, Release 1.7.6

within range. Number of trees created in each iteration eqauls to 𝑡𝑟𝑒𝑒𝑠𝑖 = 𝑛𝑢𝑚_𝑐𝑙𝑎𝑠𝑠 × 𝑛𝑢𝑚_𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙_𝑡𝑟𝑒𝑒. So if
you are training a boosted random forest with size of 4, on the 3-class classification dataset, and want to use the first 2
iterations of trees for prediction, you need to provide iteration_range=(0, 2). Then the first 2× 3× 4 trees will
be used in this prediction.

1.8.2 Early Stopping

When a model is trained with early stopping, there is an inconsistent behavior between native Python interface
and sklearn/R interfaces. By default on R and sklearn interfaces, the best_iteration is automatically used
so prediction comes from the best model. But with the native Python interface xgboost.Booster.predict()
and xgboost.Booster.inplace_predict() uses the full model. Users can use best_iteration attribute
with iteration_range parameter to achieve the same behavior. Also the save_best parameter from xgboost.
callback.EarlyStopping might be useful.

1.8.3 Predictor

There are 2 predictors in XGBoost (3 if you have the one-api plugin enabled), namely cpu_predictor and
gpu_predictor. The default option is auto so that XGBoost can employ some heuristics for saving GPU memory
during training. They might have slight different outputs due to floating point errors.

1.8.4 Base Margin

There’s a training parameter in XGBoost called base_score, and a meta data for DMatrix called base_margin
(which can be set in fit method if you are using scikit-learn interface). They specifies the global bias for boosted
model. If the latter is supplied then former is ignored. base_margin can be used to train XGBoost model based on
other models. See demos on boosting from predictions.

1.8.5 Staged Prediction

Using the native interface with DMatrix, prediction can be staged (or cached). For example, one can first predict on
the first 4 trees then run prediction on 8 trees. After running the first prediction, result from first 4 trees are cached so
when you run the prediction with 8 trees XGBoost can reuse the result from previous prediction. The cache expires
automatically upon next prediction, train or evaluation if the cached DMatrix object is expired (like going out of scope
and being collected by garbage collector in your language environment).

1.8.6 In-place Prediction

Traditionally XGBoost accepts only DMatrix for prediction, with wrappers like scikit-learn interface the construction
happens internally. We added support for in-place predict to bypass the construction of DMatrix, which is slow and
memory consuming. The new predict function has limited features but is often sufficient for simple inference tasks. It
accepts some commonly found data types in Python like numpy.ndarray, scipy.sparse.csr_matrix and cudf.
DataFrame instead of xgboost.DMatrix. You can call xgboost.Booster.inplace_predict() to use it. Be aware
that the output of in-place prediction depends on input data type, when input is on GPU data output is cupy.ndarray,
otherwise a numpy.ndarray is returned.
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1.8.7 Categorical Data

Other than users performing encoding, XGBoost has experimental support for categorical data using gpu_hist and
gpu_predictor. No special operation needs to be done on input test data since the information about categories is
encoded into the model during training.

1.8.8 Thread Safety

After 1.4 release, all prediction functions including normal predict with various parameters like shap value compu-
tation and inplace_predict are thread safe when underlying booster is gbtree or dart, which means as long as
tree model is used, prediction itself should thread safe. But the safety is only guaranteed with prediction. If one tries to
train a model in one thread and provide prediction at the other using the same model the behaviour is undefined. This
happens easier than one might expect, for instance we might accidentally call clf.set_params() inside a predict
function:

def predict_fn(clf: xgb.XGBClassifier, X):
X = preprocess(X)
clf.set_params(predictor="gpu_predictor") # NOT safe!
clf.set_params(n_jobs=1) # NOT safe!
return clf.predict_proba(X, iteration_range=(0, 10))

with ThreadPoolExecutor(max_workers=10) as e:
e.submit(predict_fn, ...)

1.9 Tree Methods

For training boosted tree models, there are 2 parameters used for choosing algorithms, namely updater and
tree_method. XGBoost has 4 builtin tree methods, namely exact, approx, hist and gpu_hist. Along with these
tree methods, there are also some free standing updaters including refresh, prune and sync. The parameter updater
is more primitive than tree_method as the latter is just a pre-configuration of the former. The difference is mostly
due to historical reasons that each updater requires some specific configurations and might has missing features. As
we are moving forward, the gap between them is becoming more and more irrelevant. We will collectively document
them under tree methods.

1.9.1 Exact Solution

Exact means XGBoost considers all candidates from data for tree splitting, but underlying the objective is still inter-
preted as a Taylor expansion.

1. exact: Vanilla gradient boosting tree algorithm described in reference paper. During each split finding pro-
cedure, it iterates over all entries of input data. It’s more accurate (among other greedy methods) but slow in
computation performance. Also it doesn’t support distributed training as XGBoost employs row spliting data
distribution while exact tree method works on a sorted column format. This tree method can be used with
parameter tree_method set to exact.

110 Chapter 1. Contents

http://arxiv.org/abs/1603.02754


xgboost, Release 1.7.6

1.9.2 Approximated Solutions

As exact tree method is slow in performance and not scalable, we often employ approximated training algorithms.
These algorithms build a gradient histogram for each node and iterate through the histogram instead of real dataset.
Here we introduce the implementations in XGBoost below.

1. approx tree method: An approximation tree method described in reference paper. It runs sketching before
building each tree using all the rows (rows belonging to the root). Hessian is used as weights during sketch. The
algorithm can be accessed by setting tree_method to approx.

2. hist tree method: An approximation tree method used in LightGBM with slight differences in implementation.
It runs sketching before training using only user provided weights instead of hessian. The subsequent per-node
histogram is built upon this global sketch. This is the fastest algorithm as it runs sketching only once. The
algorithm can be accessed by setting tree_method to hist.

3. gpu_hist tree method: The gpu_hist tree method is a GPU implementation of hist, with additional support
for gradient based sampling. The algorithm can be accessed by setting tree_method to gpu_hist.

1.9.3 Implications

Some objectives like reg:squarederror have constant hessian. In this case, hist or gpu_hist should be preferred
as weighted sketching doesn’t make sense with constant weights. When using non-constant hessian objectives, some-
times approx yields better accuracy, but with slower computation performance. Most of the time using (gpu)_hist
with higher max_bin can achieve similar or even superior accuracy while maintaining good performance. However,
as xgboost is largely driven by community effort, the actual implementations have some differences than pure math
description. Result might have slight differences than expectation, which we are currently trying to overcome.

1.9.4 Other Updaters

1. Prune: It prunes the existing trees. prune is usually used as part of other tree methods. To use pruner in-
dependently, one needs to set the process type to update by: {"process_type": "update", "updater":
"prune"}. With this set of parameters, during trianing, XGBOost will prune the existing trees according to 2
parameters min_split_loss (gamma) and max_depth.

2. Refresh: Refresh the statistic of built trees on a new training dataset. Like the pruner, To use refresh in-
dependently, one needs to set the process type to update: {"process_type": "update", "updater":
"refresh"}. During training, the updater will change statistics like cover and weight according to the new
training dataset. When refresh_leaf is also set to true (default), XGBoost will update the leaf value according
to the new leaf weight, but the tree structure (split condition) itself doesn’t change.

There are examples on both training continuation (adding new trees) and using update process on demo/
guide-python. Also checkout the process_type parameter in XGBoost Parameters.

3. Sync: Synchronize the tree among workers when running distributed training.
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1.9.5 Removed Updaters

3 Updaters were removed during development due to maintainability. We describe them here solely for the interest of
documentation.

1. Distributed colmaker, which was a distributed version of exact tree method. It required specialization for column
based splitting strategy and a different prediction procedure. As the exact tree method is slow by itself and scaling
is even less efficient, we removed it entirely.

2. skmaker. Per-node weighted sketching employed by grow_local_histmaker is slow, the skmaker was un-
maintained and seems to be a workaround trying to eliminate the histogram creation step and uses sketching
values directly during split evaluation. It was never tested and contained some unknown bugs, we decided to re-
move it and focus our resources on more promising algorithms instead. For accuracy, most of the time approx,
hist and gpu_hist are enough with some parameters tuning, so removing them don’t have any real practical
impact.

3. grow_local_histmaker updater: An approximation tree method described in reference paper. This updater
was rarely used in practice so it was still an updater rather than tree method. During split finding, it first runs a
weighted GK sketching for data points belong to current node to find split candidates, using hessian as weights.
The histogram is built upon this per-node sketch. It was faster than exact in some applications, but still slow in
computation. It was removed because it depended on Rabit’s customized reduction function that handles all the
data structure that can be serialized/deserialized into fixed size buffer, which is not directly supported by NCCL
or federated learning gRPC, making it hard to refactor into a common allreducer interface.

1.9.6 Feature Matrix

Following table summarizes some differences in supported features between 4 tree methods, T means supported while
F means unsupported.

Exact Approx Hist GPU Hist
grow_policy Depthwise depthwise/lossguide depthwise/lossguide depthwise/lossguide
max_leaves F T T T
sampling method uniform uniform uniform gradient_based/uniform
categorical data F T T T
External memory F T T P
Distributed F T T T

Features/parameters that are not mentioned here are universally supported for all 4 tree methods (for instance, column
sampling and constraints). The P in external memory means partially supported. Please note that both categorical data
and external memory are experimental.

1.10 XGBoost Python Package

This page contains links to all the python related documents on python package. To install the package, checkout
Installation Guide.
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1.10.1 Contents

Python Package Introduction

This document gives a basic walkthrough of the xgboost package for Python. The Python package is consisted of
3 different interfaces, including native interface, scikit-learn interface and dask interface. For introduction to dask
interface please see Distributed XGBoost with Dask.

List of other Helpful Links

• XGBoost Python Feature Walkthrough

• Python API Reference

Contents

• Install XGBoost

• Data Interface

• Setting Parameters

• Training

• Early Stopping

• Prediction

• Plotting

• Scikit-Learn interface

Install XGBoost

To install XGBoost, follow instructions in Installation Guide.

To verify your installation, run the following in Python:

import xgboost as xgb

Data Interface

The XGBoost python module is able to load data from many different types of data format, including:

• NumPy 2D array

• SciPy 2D sparse array

• Pandas data frame

• cuDF DataFrame

• cupy 2D array

• dlpack

• datatable

• XGBoost binary buffer file.
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• LIBSVM text format file

• Comma-separated values (CSV) file

• Arrow table.

(See Text Input Format of DMatrix for detailed description of text input format.)

The data is stored in a DMatrix object.

• To load a NumPy array into DMatrix:

data = np.random.rand(5, 10) # 5 entities, each contains 10 features
label = np.random.randint(2, size=5) # binary target
dtrain = xgb.DMatrix(data, label=label)

• To load a scipy.sparse array into DMatrix:

csr = scipy.sparse.csr_matrix((dat, (row, col)))
dtrain = xgb.DMatrix(csr)

• To load a Pandas data frame into DMatrix:

data = pandas.DataFrame(np.arange(12).reshape((4,3)), columns=['a', 'b', 'c'])
label = pandas.DataFrame(np.random.randint(2, size=4))
dtrain = xgb.DMatrix(data, label=label)

• Saving DMatrix into a XGBoost binary file will make loading faster:

dtrain = xgb.DMatrix('train.svm.txt')
dtrain.save_binary('train.buffer')

• Missing values can be replaced by a default value in the DMatrix constructor:

dtrain = xgb.DMatrix(data, label=label, missing=np.NaN)

• Weights can be set when needed:

w = np.random.rand(5, 1)
dtrain = xgb.DMatrix(data, label=label, missing=np.NaN, weight=w)

When performing ranking tasks, the number of weights should be equal to number of groups.

• To load a LIBSVM text file or a XGBoost binary file into DMatrix:

dtrain = xgb.DMatrix('train.svm.txt')
dtest = xgb.DMatrix('test.svm.buffer')

The parser in XGBoost has limited functionality. When using Python interface, it’s recommended to use sklearn
load_svmlight_file or other similar utilites than XGBoost’s builtin parser.

• To load a CSV file into DMatrix:

# label_column specifies the index of the column containing the true label
dtrain = xgb.DMatrix('train.csv?format=csv&label_column=0')
dtest = xgb.DMatrix('test.csv?format=csv&label_column=0')

The parser in XGBoost has limited functionality. When using Python interface, it’s recommended to use pandas
read_csv or other similar utilites than XGBoost’s builtin parser.
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Setting Parameters

XGBoost can use either a list of pairs or a dictionary to set parameters. For instance:

• Booster parameters

param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
param['nthread'] = 4
param['eval_metric'] = 'auc'

• You can also specify multiple eval metrics:

param['eval_metric'] = ['auc', 'ams@0']

# alternatively:
# plst = param.items()
# plst += [('eval_metric', 'ams@0')]

• Specify validations set to watch performance

evallist = [(dtrain, 'train'), (dtest, 'eval')]

Training

Training a model requires a parameter list and data set.

num_round = 10
bst = xgb.train(param, dtrain, num_round, evallist)

After training, the model can be saved.

bst.save_model('0001.model')

The model and its feature map can also be dumped to a text file.

# dump model
bst.dump_model('dump.raw.txt')
# dump model with feature map
bst.dump_model('dump.raw.txt', 'featmap.txt')

A saved model can be loaded as follows:

bst = xgb.Booster({'nthread': 4}) # init model
bst.load_model('model.bin') # load data

Methods including update and boost from xgboost.Booster are designed for internal usage only. The wrapper function
xgboost.train does some pre-configuration including setting up caches and some other parameters.
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Early Stopping

If you have a validation set, you can use early stopping to find the optimal number of boosting rounds. Early stopping
requires at least one set in evals. If there’s more than one, it will use the last.

train(..., evals=evals, early_stopping_rounds=10)

The model will train until the validation score stops improving. Validation error needs to decrease at least every
early_stopping_rounds to continue training.

If early stopping occurs, the model will have two additional fields: bst.best_score, bst.best_iteration. Note
that xgboost.train() will return a model from the last iteration, not the best one.

This works with both metrics to minimize (RMSE, log loss, etc.) and to maximize (MAP, NDCG, AUC). Note that if
you specify more than one evaluation metric the last one in param['eval_metric'] is used for early stopping.

Prediction

A model that has been trained or loaded can perform predictions on data sets.

# 7 entities, each contains 10 features
data = np.random.rand(7, 10)
dtest = xgb.DMatrix(data)
ypred = bst.predict(dtest)

If early stopping is enabled during training, you can get predictions from the best iteration with bst.best_iteration:

ypred = bst.predict(dtest, iteration_range=(0, bst.best_iteration + 1))

Plotting

You can use plotting module to plot importance and output tree.

To plot importance, use xgboost.plot_importance(). This function requires matplotlib to be installed.

xgb.plot_importance(bst)

To plot the output tree via matplotlib, use xgboost.plot_tree(), specifying the ordinal number of the target tree.
This function requires graphviz and matplotlib.

xgb.plot_tree(bst, num_trees=2)

When you use IPython, you can use the xgboost.to_graphviz() function, which converts the target tree to a
graphviz instance. The graphviz instance is automatically rendered in IPython.

xgb.to_graphviz(bst, num_trees=2)
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Scikit-Learn interface

XGBoost provides an easy to use scikit-learn interface for some pre-defined models including regression, classification
and ranking.

# Use "gpu_hist" for training the model.
reg = xgb.XGBRegressor(tree_method="gpu_hist")
# Fit the model using predictor X and response y.
reg.fit(X, y)
# Save model into JSON format.
reg.save_model("regressor.json")

User can still access the underlying booster model when needed:

booster: xgb.Booster = reg.get_booster()

Python API Reference

This page gives the Python API reference of xgboost, please also refer to Python Package Introduction for more infor-
mation about the Python package.

• Global Configuration

• Core Data Structure

• Learning API

• Scikit-Learn API

• Plotting API

• Callback API

• Dask API

– Dask extensions for distributed training

∗ Optional dask configuration

• PySpark API

Global Configuration

xgboost.config_context(**new_config)
Context manager for global XGBoost configuration.

Global configuration consists of a collection of parameters that can be applied in the global scope. See Global
Configuration for the full list of parameters supported in the global configuration.

Note: All settings, not just those presently modified, will be returned to their previous values when the context
manager is exited. This is not thread-safe.

New in version 1.4.0.
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Parameters
new_config (Dict[str, Any]) – Keyword arguments representing the parameters and their
values

Return type
Iterator[None]

Example

import xgboost as xgb

# Show all messages, including ones pertaining to debugging
xgb.set_config(verbosity=2)

# Get current value of global configuration
# This is a dict containing all parameters in the global configuration,
# including 'verbosity'
config = xgb.get_config()
assert config['verbosity'] == 2

# Example of using the context manager xgb.config_context().
# The context manager will restore the previous value of the global
# configuration upon exiting.
with xgb.config_context(verbosity=0):

# Suppress warning caused by model generated with XGBoost version < 1.0.0
bst = xgb.Booster(model_file='./old_model.bin')

assert xgb.get_config()['verbosity'] == 2 # old value restored

Nested configuration context is also supported:

Example

with xgb.config_context(verbosity=3):
assert xgb.get_config()["verbosity"] == 3
with xgb.config_context(verbosity=2):

assert xgb.get_config()["verbosity"] == 2

xgb.set_config(verbosity=2)
assert xgb.get_config()["verbosity"] == 2
with xgb.config_context(verbosity=3):

assert xgb.get_config()["verbosity"] == 3

See also:

set_config
Set global XGBoost configuration

get_config
Get current values of the global configuration

xgboost.set_config(**new_config)
Set global configuration.
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Global configuration consists of a collection of parameters that can be applied in the global scope. See Global
Configuration for the full list of parameters supported in the global configuration.

New in version 1.4.0.

Parameters
new_config (Dict[str, Any]) – Keyword arguments representing the parameters and their
values

Return type
None

Example

import xgboost as xgb

# Show all messages, including ones pertaining to debugging
xgb.set_config(verbosity=2)

# Get current value of global configuration
# This is a dict containing all parameters in the global configuration,
# including 'verbosity'
config = xgb.get_config()
assert config['verbosity'] == 2

# Example of using the context manager xgb.config_context().
# The context manager will restore the previous value of the global
# configuration upon exiting.
with xgb.config_context(verbosity=0):

# Suppress warning caused by model generated with XGBoost version < 1.0.0
bst = xgb.Booster(model_file='./old_model.bin')

assert xgb.get_config()['verbosity'] == 2 # old value restored

Nested configuration context is also supported:

Example

with xgb.config_context(verbosity=3):
assert xgb.get_config()["verbosity"] == 3
with xgb.config_context(verbosity=2):

assert xgb.get_config()["verbosity"] == 2

xgb.set_config(verbosity=2)
assert xgb.get_config()["verbosity"] == 2
with xgb.config_context(verbosity=3):

assert xgb.get_config()["verbosity"] == 3

xgboost.get_config()

Get current values of the global configuration.

Global configuration consists of a collection of parameters that can be applied in the global scope. See Global
Configuration for the full list of parameters supported in the global configuration.

New in version 1.4.0.
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Returns
args – The list of global parameters and their values

Return type
Dict[str, Any]

Example

import xgboost as xgb

# Show all messages, including ones pertaining to debugging
xgb.set_config(verbosity=2)

# Get current value of global configuration
# This is a dict containing all parameters in the global configuration,
# including 'verbosity'
config = xgb.get_config()
assert config['verbosity'] == 2

# Example of using the context manager xgb.config_context().
# The context manager will restore the previous value of the global
# configuration upon exiting.
with xgb.config_context(verbosity=0):

# Suppress warning caused by model generated with XGBoost version < 1.0.0
bst = xgb.Booster(model_file='./old_model.bin')

assert xgb.get_config()['verbosity'] == 2 # old value restored

Nested configuration context is also supported:

Example

with xgb.config_context(verbosity=3):
assert xgb.get_config()["verbosity"] == 3
with xgb.config_context(verbosity=2):

assert xgb.get_config()["verbosity"] == 2

xgb.set_config(verbosity=2)
assert xgb.get_config()["verbosity"] == 2
with xgb.config_context(verbosity=3):

assert xgb.get_config()["verbosity"] == 3

Core Data Structure

Core XGBoost Library.

class xgboost.DMatrix(data, label=None, *, weight=None, base_margin=None, missing=None, silent=False,
feature_names=None, feature_types=None, nthread=None, group=None, qid=None,
label_lower_bound=None, label_upper_bound=None, feature_weights=None,
enable_categorical=False)

Bases: object

Data Matrix used in XGBoost.
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DMatrix is an internal data structure that is used by XGBoost, which is optimized for both memory efficiency
and training speed. You can construct DMatrix from multiple different sources of data.

Parameters

• data (os.PathLike/string/numpy.array/scipy.sparse/pd.DataFrame/) –
dt.Frame/cudf.DataFrame/cupy.array/dlpack/arrow.Table

Data source of DMatrix.

When data is string or os.PathLike type, it represents the path libsvm format txt file, csv file
(by specifying uri parameter ‘path_to_csv?format=csv’), or binary file that xgboost can read
from.

• label (array_like) – Label of the training data.

• weight (array_like) – Weight for each instance.

Note: For ranking task, weights are per-group.

In ranking task, one weight is assigned to each group (not each data point). This is because
we only care about the relative ordering of data points within each group, so it doesn’t make
sense to assign weights to individual data points.

• base_margin (array_like) – Base margin used for boosting from existing model.

• missing (float, optional) – Value in the input data which needs to be present as a
missing value. If None, defaults to np.nan.

• silent (boolean, optional) – Whether print messages during construction

• feature_names (list, optional) – Set names for features.

• feature_types (FeatureTypes) – Set types for features. When enable_categorical is
set to True, string “c” represents categorical data type while “q” represents numerical fea-
ture type. For categorical features, the input is assumed to be preprocessed and encoded by
the users. The encoding can be done via sklearn.preprocessing.OrdinalEncoder or
pandas dataframe .cat.codes method. This is useful when users want to specify categorical
features without having to construct a dataframe as input.

• nthread (integer, optional) – Number of threads to use for loading data when paral-
lelization is applicable. If -1, uses maximum threads available on the system.

• group (array_like) – Group size for all ranking group.

• qid (array_like) – Query ID for data samples, used for ranking.

• label_lower_bound (array_like) – Lower bound for survival training.

• label_upper_bound (array_like) – Upper bound for survival training.

• feature_weights (array_like, optional) – Set feature weights for column sampling.

• enable_categorical (boolean, optional) – New in version 1.3.0.

Note: This parameter is experimental

Experimental support of specializing for categorical features. Do not set to True unless you
are interested in development. Also, JSON/UBJSON serialization format is required.
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property feature_names: Sequence[str] | None

Get feature names (column labels).

Returns
feature_names

Return type
list or None

property feature_types: Sequence[str] | None

Get feature types (column types).

Returns
feature_types

Return type
list or None

get_base_margin()

Get the base margin of the DMatrix.

Return type
base_margin

get_data()

Get the predictors from DMatrix as a CSR matrix. This getter is mostly for testing purposes. If this is a
quantized DMatrix then quantized values are returned instead of input values.

New in version 1.7.0.

Return type
csr_matrix

get_float_info(field)
Get float property from the DMatrix.

Parameters
field (str) – The field name of the information

Returns
info – a numpy array of float information of the data

Return type
array

get_group()

Get the group of the DMatrix.

Return type
group

get_label()

Get the label of the DMatrix.

Returns
label

Return type
array
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get_uint_info(field)
Get unsigned integer property from the DMatrix.

Parameters
field (str) – The field name of the information

Returns
info – a numpy array of unsigned integer information of the data

Return type
array

get_weight()

Get the weight of the DMatrix.

Returns
weight

Return type
array

num_col()

Get the number of columns (features) in the DMatrix.

Return type
int

num_nonmissing()

Get the number of non-missing values in the DMatrix.

Return type
int

num_row()

Get the number of rows in the DMatrix.

Return type
int

save_binary(fname, silent=True)
Save DMatrix to an XGBoost buffer. Saved binary can be later loaded by providing the path to xgboost.
DMatrix() as input.

Parameters

• fname (string or os.PathLike) – Name of the output buffer file.

• silent (bool (optional; default: True)) – If set, the output is suppressed.

Return type
None

set_base_margin(margin)
Set base margin of booster to start from.

This can be used to specify a prediction value of existing model to be base_margin However, remember
margin is needed, instead of transformed prediction e.g. for logistic regression: need to put in value before
logistic transformation see also example/demo.py

Parameters
margin (array like) – Prediction margin of each datapoint
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Return type
None

set_float_info(field, data)
Set float type property into the DMatrix.

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

Return type
None

set_float_info_npy2d(field, data)

Set float type property into the DMatrix
for numpy 2d array input

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

Return type
None

set_group(group)
Set group size of DMatrix (used for ranking).

Parameters
group (array like) – Group size of each group

Return type
None

set_info(*, label=None, weight=None, base_margin=None, group=None, qid=None,
label_lower_bound=None, label_upper_bound=None, feature_names=None, feature_types=None,
feature_weights=None)

Set meta info for DMatrix. See doc string for xgboost.DMatrix.

Parameters

• label (Any | None) –

• weight (Any | None) –

• base_margin (Any | None) –

• group (Any | None) –

• qid (Any | None) –

• label_lower_bound (Any | None) –

• label_upper_bound (Any | None) –

• feature_names (Sequence[str] | None) –

• feature_types (Sequence[str] | None) –

• feature_weights (Any | None) –
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Return type
None

set_label(label)
Set label of dmatrix

Parameters
label (array like) – The label information to be set into DMatrix

Return type
None

set_uint_info(field, data)
Set uint type property into the DMatrix.

Parameters

• field (str) – The field name of the information

• data (numpy array) – The array of data to be set

Return type
None

set_weight(weight)
Set weight of each instance.

Parameters
weight (array like) – Weight for each data point

Note: For ranking task, weights are per-group.

In ranking task, one weight is assigned to each group (not each data point). This is because
we only care about the relative ordering of data points within each group, so it doesn’t make
sense to assign weights to individual data points.

Return type
None

slice(rindex, allow_groups=False)
Slice the DMatrix and return a new DMatrix that only contains rindex.

Parameters

• rindex (List[int] | ndarray) – List of indices to be selected.

• allow_groups (bool) – Allow slicing of a matrix with a groups attribute

Returns
A new DMatrix containing only selected indices.

Return type
res

class xgboost.QuantileDMatrix(data, label=None, *, weight=None, base_margin=None, missing=None,
silent=False, feature_names=None, feature_types=None, nthread=None,
max_bin=None, ref=None, group=None, qid=None,
label_lower_bound=None, label_upper_bound=None,
feature_weights=None, enable_categorical=False)

Bases: DMatrix

1.10. XGBoost Python Package 125

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.List
https://docs.python.org/3.8/library/functions.html#int
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.8/library/functions.html#bool


xgboost, Release 1.7.6

A DMatrix variant that generates quantilized data directly from input for hist and gpu_hist tree methods.
This DMatrix is primarily designed to save memory in training by avoiding intermediate storage. Set max_bin to
control the number of bins during quantisation, which should be consistent with the training parameter max_bin.
When QuantileDMatrix is used for validation/test dataset, ref should be another QuantileDMatrix``(or
``DMatrix, but not recommended as it defeats the purpose of saving memory) constructed from training dataset.
See xgboost.DMatrix for documents on meta info.

Note: Do not use QuantileDMatrix as validation/test dataset without supplying a reference (the training
dataset) QuantileDMatrix using ref as some information may be lost in quantisation.

New in version 1.7.0.

Parameters

• max_bin (int | None) – The number of histogram bin, should be consistent with the train-
ing parameter max_bin.

• ref (DMatrix | None) – The training dataset that provides quantile information, needed
when creating validation/test dataset with QuantileDMatrix. Supplying the training DMa-
trix as a reference means that the same quantisation applied to the training data is applied to
the validation/test data

• data (os.PathLike/string/numpy.array/scipy.sparse/pd.DataFrame/) –
dt.Frame/cudf.DataFrame/cupy.array/dlpack/arrow.Table

Data source of DMatrix.

When data is string or os.PathLike type, it represents the path libsvm format txt file, csv file
(by specifying uri parameter ‘path_to_csv?format=csv’), or binary file that xgboost can read
from.

• label (array_like) – Label of the training data.

• weight (array_like) – Weight for each instance.

Note: For ranking task, weights are per-group.

In ranking task, one weight is assigned to each group (not each data point). This is because
we only care about the relative ordering of data points within each group, so it doesn’t make
sense to assign weights to individual data points.

• base_margin (array_like) – Base margin used for boosting from existing model.

• missing (float, optional) – Value in the input data which needs to be present as a
missing value. If None, defaults to np.nan.

• silent (boolean, optional) – Whether print messages during construction

• feature_names (list, optional) – Set names for features.

• feature_types (FeatureTypes) – Set types for features. When enable_categorical is
set to True, string “c” represents categorical data type while “q” represents numerical fea-
ture type. For categorical features, the input is assumed to be preprocessed and encoded by
the users. The encoding can be done via sklearn.preprocessing.OrdinalEncoder or
pandas dataframe .cat.codes method. This is useful when users want to specify categorical
features without having to construct a dataframe as input.

• nthread (integer, optional) – Number of threads to use for loading data when paral-
lelization is applicable. If -1, uses maximum threads available on the system.
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• group (array_like) – Group size for all ranking group.

• qid (array_like) – Query ID for data samples, used for ranking.

• label_lower_bound (array_like) – Lower bound for survival training.

• label_upper_bound (array_like) – Upper bound for survival training.

• feature_weights (array_like, optional) – Set feature weights for column sampling.

• enable_categorical (boolean, optional) – New in version 1.3.0.

Note: This parameter is experimental

Experimental support of specializing for categorical features. Do not set to True unless you
are interested in development. Also, JSON/UBJSON serialization format is required.

class xgboost.Booster(params=None, cache=None, model_file=None)
Bases: object

A Booster of XGBoost.

Booster is the model of xgboost, that contains low level routines for training, prediction and evaluation.

Parameters

• params (dict) – Parameters for boosters.

• cache (list) – List of cache items.

• model_file (string/os.PathLike/Booster/bytearray) – Path to the model file if it’s
string or PathLike.

attr(key)
Get attribute string from the Booster.

Parameters
key (str) – The key to get attribute from.

Returns
value – The attribute value of the key, returns None if attribute do not exist.

Return type
str

attributes()

Get attributes stored in the Booster as a dictionary.

Returns
result – Returns an empty dict if there’s no attributes.

Return type
dictionary of attribute_name: attribute_value pairs of strings.

boost(dtrain, grad, hess)
Boost the booster for one iteration, with customized gradient statistics. Like xgboost.Booster.
update(), this function should not be called directly by users.

Parameters

• dtrain (DMatrix) – The training DMatrix.

• grad (ndarray) – The first order of gradient.
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• hess (ndarray) – The second order of gradient.

Return type
None

copy()

Copy the booster object.

Returns
booster – a copied booster model

Return type
Booster

dump_model(fout, fmap='', with_stats=False, dump_format='text')
Dump model into a text or JSON file. Unlike save_model(), the output format is primarily used for
visualization or interpretation, hence it’s more human readable but cannot be loaded back to XGBoost.

Parameters

• fout (string or os.PathLike) – Output file name.

• fmap (string or os.PathLike, optional) – Name of the file containing feature map
names.

• with_stats (bool, optional) – Controls whether the split statistics are output.

• dump_format (string, optional) – Format of model dump file. Can be ‘text’ or ‘json’.

Return type
None

eval(data, name='eval', iteration=0)
Evaluate the model on mat.

Parameters

• data (DMatrix) – The dmatrix storing the input.

• name (str) – The name of the dataset.

• iteration (int) – The current iteration number.

Returns
result – Evaluation result string.

Return type
str

eval_set(evals, iteration=0, feval=None, output_margin=True)
Evaluate a set of data.

Parameters

• evals (Sequence[Tuple[DMatrix, str]]) – List of items to be evaluated.

• iteration (int) – Current iteration.

• feval (Callable[[ndarray, DMatrix], Tuple[str, float]] | None) – Cus-
tom evaluation function.

• output_margin (bool) –

Returns
result – Evaluation result string.
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Return type
str

property feature_names: Sequence[str] | None

Feature names for this booster. Can be directly set by input data or by assignment.

property feature_types: Sequence[str] | None

Feature types for this booster. Can be directly set by input data or by assignment. See DMatrix for details.

get_dump(fmap='', with_stats=False, dump_format='text')
Returns the model dump as a list of strings. Unlike save_model(), the output format is primarily used for
visualization or interpretation, hence it’s more human readable but cannot be loaded back to XGBoost.

Parameters

• fmap (str | PathLike) – Name of the file containing feature map names.

• with_stats (bool) – Controls whether the split statistics are output.

• dump_format (str) – Format of model dump. Can be ‘text’, ‘json’ or ‘dot’.

Return type
List[str]

get_fscore(fmap='')
Get feature importance of each feature.

Note: Zero-importance features will not be included

Keep in mind that this function does not include zero-importance feature, i.e. those features that have not
been used in any split conditions.

Parameters
fmap (str | PathLike) – The name of feature map file

Return type
Dict[str, float | List[float]]

get_score(fmap='', importance_type='weight')
Get feature importance of each feature. For tree model Importance type can be defined as:

• ‘weight’: the number of times a feature is used to split the data across all trees.

• ‘gain’: the average gain across all splits the feature is used in.

• ‘cover’: the average coverage across all splits the feature is used in.

• ‘total_gain’: the total gain across all splits the feature is used in.

• ‘total_cover’: the total coverage across all splits the feature is used in.

Note: For linear model, only “weight” is defined and it’s the normalized coefficients without bias.

Note: Zero-importance features will not be included

Keep in mind that this function does not include zero-importance feature, i.e. those features that have not
been used in any split conditions.
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Parameters

• fmap (str | PathLike) – The name of feature map file.

• importance_type (str) – One of the importance types defined above.

Returns

• A map between feature names and their scores. When gblinear is used for

• multi-class classification the scores for each feature is a list with length

• n_classes, otherwise they’re scalars.

Return type
Dict[str, float | List[float]]

get_split_value_histogram(feature, fmap='', bins=None, as_pandas=True)
Get split value histogram of a feature

Parameters

• feature (str) – The name of the feature.

• fmap (str or os.PathLike (optional)) – The name of feature map file.

• bin (int, default None) – The maximum number of bins. Number of bins equals
number of unique split values n_unique, if bins == None or bins > n_unique.

• as_pandas (bool, default True) – Return pd.DataFrame when pandas is installed. If
False or pandas is not installed, return numpy ndarray.

• bins (int | None) –

Returns

• a histogram of used splitting values for the specified feature

• either as numpy array or pandas DataFrame.

Return type
ndarray | DataFrame

inplace_predict(data, iteration_range=(0, 0), predict_type='value', missing=nan, validate_features=True,
base_margin=None, strict_shape=False)

Run prediction in-place, Unlike predict()method, inplace prediction does not cache the prediction result.

Calling only inplace_predict in multiple threads is safe and lock free. But the safety does not hold
when used in conjunction with other methods. E.g. you can’t train the booster in one thread and perform
prediction in the other.

booster.set_param({"predictor": "gpu_predictor"})
booster.inplace_predict(cupy_array)

booster.set_param({"predictor": "cpu_predictor"})
booster.inplace_predict(numpy_array)

New in version 1.1.0.

Parameters

• data (numpy.ndarray/scipy.sparse.csr_matrix/cupy.ndarray/) –
cudf.DataFrame/pd.DataFrame The input data, must not be a view for numpy array.
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Set predictor to gpu_predictor for running prediction on CuPy array or CuDF
DataFrame.

• iteration_range (Tuple[int, int]) – See predict() for details.

• predict_type (str) –

– value Output model prediction values.

– margin Output the raw untransformed margin value.

• missing (float) – See xgboost.DMatrix for details.

• validate_features (bool) – See xgboost.Booster.predict() for details.

• base_margin (Any | None) – See xgboost.DMatrix for details.

New in version 1.4.0.

• strict_shape (bool) – See xgboost.Booster.predict() for details.

New in version 1.4.0.

Returns
prediction – The prediction result. When input data is on GPU, prediction result is stored in
a cupy array.

Return type
numpy.ndarray/cupy.ndarray

load_config(config)
Load configuration returned by save_config.

New in version 1.0.0.

Parameters
config (str) –

Return type
None

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

num_boosted_rounds()

Get number of boosted rounds. For gblinear this is reset to 0 after serializing the model.
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Return type
int

num_features()

Number of features in booster.

Return type
int

predict(data, output_margin=False, ntree_limit=0, pred_leaf=False, pred_contribs=False,
approx_contribs=False, pred_interactions=False, validate_features=True, training=False,
iteration_range=(0, 0), strict_shape=False)

Predict with data. The full model will be used unless iteration_range is specified, meaning user have to
either slice the model or use the best_iteration attribute to get prediction from best model returned
from early stopping.

Note: See Prediction for issues like thread safety and a summary of outputs from this function.

Parameters

• data (DMatrix) – The dmatrix storing the input.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int) – Deprecated, use iteration_range instead.

• pred_leaf (bool) – When this option is on, the output will be a matrix of (nsample,
ntrees) with each record indicating the predicted leaf index of each sample in each tree.
Note that the leaf index of a tree is unique per tree, so you may find leaf 1 in both tree 1
and tree 0.

• pred_contribs (bool) – When this is True the output will be a matrix of size (nsample,
nfeats + 1) with each record indicating the feature contributions (SHAP values) for that
prediction. The sum of all feature contributions is equal to the raw untransformed margin
value of the prediction. Note the final column is the bias term.

• approx_contribs (bool) – Approximate the contributions of each feature. Used when
pred_contribs or pred_interactions is set to True. Changing the default of this
parameter (False) is not recommended.

• pred_interactions (bool) – When this is True the output will be a matrix of size (nsam-
ple, nfeats + 1, nfeats + 1) indicating the SHAP interaction values for each pair of features.
The sum of each row (or column) of the interaction values equals the corresponding SHAP
value (from pred_contribs), and the sum of the entire matrix equals the raw untransformed
margin value of the prediction. Note the last row and column correspond to the bias term.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• training (bool) – Whether the prediction value is used for training. This can effect dart
booster, which performs dropouts during training iterations but use all trees for inference.
If you want to obtain result with dropouts, set this parameter to True. Also, the parameter
is set to true when obtaining prediction for custom objective function.

New in version 1.0.0.

• iteration_range (Tuple[int, int]) – Specifies which layer of trees are used in pre-
diction. For example, if a random forest is trained with 100 rounds. Specifying itera-

132 Chapter 1. Contents

https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/typing.html#typing.Tuple
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int


xgboost, Release 1.7.6

tion_range=(10, 20), then only the forests built during [10, 20) (half open set) rounds are
used in this prediction.

New in version 1.4.0.

• strict_shape (bool) – When set to True, output shape is invariant to whether classi-
fication is used. For both value and margin prediction, the output shape is (n_samples,
n_groups), n_groups == 1 when multi-class is not used. Default to False, in which case the
output shape can be (n_samples, ) if multi-class is not used.

New in version 1.4.0.

Returns
prediction

Return type
numpy array

save_config()

Output internal parameter configuration of Booster as a JSON string.

New in version 1.0.0.

Return type
str

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

save_raw(raw_format='deprecated')
Save the model to a in memory buffer representation instead of file.

Parameters
raw_format (str) – Format of output buffer. Can be json, ubj or deprecated. Right now the
default is deprecated but it will be changed to ubj (univeral binary json) in the future.

Return type
An in memory buffer representation of the model

set_attr(**kwargs)
Set the attribute of the Booster.

Parameters
**kwargs (str | None) – The attributes to set. Setting a value to None deletes an attribute.
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Return type
None

set_param(params, value=None)
Set parameters into the Booster.

Parameters

• params (dict/list/str) – list of key,value pairs, dict of key to value or simply str key

• value (optional) – value of the specified parameter, when params is str key

Return type
None

trees_to_dataframe(fmap='')
Parse a boosted tree model text dump into a pandas DataFrame structure.

This feature is only defined when the decision tree model is chosen as base learner (booster in {gbtree,
dart}). It is not defined for other base learner types, such as linear learners (booster=gblinear).

Parameters
fmap (str or os.PathLike (optional)) – The name of feature map file.

Return type
DataFrame

update(dtrain, iteration, fobj=None)
Update for one iteration, with objective function calculated internally. This function should not be called
directly by users.

Parameters

• dtrain (DMatrix) – Training data.

• iteration (int) – Current iteration number.

• fobj (function) – Customized objective function.

Return type
None

Learning API

Training Library containing training routines.

xgboost.train(params, dtrain, num_boost_round=10, *, evals=None, obj=None, feval=None, maximize=None,
early_stopping_rounds=None, evals_result=None, verbose_eval=True, xgb_model=None,
callbacks=None, custom_metric=None)

Train a booster with given parameters.

Parameters

• params (Dict[str, Any]) – Booster params.

• dtrain (DMatrix) – Data to be trained.

• num_boost_round (int) – Number of boosting iterations.

• evals (Sequence[Tuple[DMatrix, str]] | None) – List of validation sets for which
metrics will evaluated during training. Validation metrics will help us track the performance
of the model.
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• obj (Callable[[ndarray, DMatrix], Tuple[ndarray, ndarray]] | None) –
Custom objective function. See Custom Objective for details.

• feval (Callable[[ndarray, DMatrix], Tuple[str, float]] | None) – Depre-
cated since version 1.6.0: Use custom_metric instead.

• maximize (bool) – Whether to maximize feval.

• early_stopping_rounds (int | None) – Activates early stopping. Validation metric
needs to improve at least once in every early_stopping_rounds round(s) to continue training.
Requires at least one item in evals. The method returns the model from the last iteration (not
the best one). Use custom callback or model slicing if the best model is desired. If there’s
more than one item in evals, the last entry will be used for early stopping. If there’s more
than one metric in the eval_metric parameter given in params, the last metric will be used
for early stopping. If early stopping occurs, the model will have two additional fields: bst.
best_score, bst.best_iteration.

• evals_result (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) – This dictionary stores the evaluation results of all the items in watchlist.

Example: with a watchlist containing [(dtest,'eval'), (dtrain,'train')] and a pa-
rameter containing ('eval_metric': 'logloss'), the evals_result returns

{'train': {'logloss': ['0.48253', '0.35953']},
'eval': {'logloss': ['0.480385', '0.357756']}}

• verbose_eval (bool | int | None) – Requires at least one item in evals. If ver-
bose_eval is True then the evaluation metric on the validation set is printed at each boosting
stage. If verbose_eval is an integer then the evaluation metric on the validation set is printed
at every given verbose_eval boosting stage. The last boosting stage / the boosting stage found
by using early_stopping_rounds is also printed. Example: with verbose_eval=4 and at
least one item in evals, an evaluation metric is printed every 4 boosting stages, instead of
every boosting stage.

• xgb_model (str | PathLike | Booster | bytearray | None) – Xgb model to be
loaded before training (allows training continuation).

• callbacks (Sequence[TrainingCallback] | None) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using Call-
back API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• custom_metric (Callable[[ndarray, DMatrix], Tuple[str, float]] | None)
– Custom metric function. See Custom Metric for details.

Returns
Booster

Return type
a trained booster model
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xgboost.cv(params, dtrain, num_boost_round=10, nfold=3, stratified=False, folds=None, metrics=(), obj=None,
feval=None, maximize=None, early_stopping_rounds=None, fpreproc=None, as_pandas=True,
verbose_eval=None, show_stdv=True, seed=0, callbacks=None, shuffle=True, custom_metric=None)

Cross-validation with given parameters.

Parameters

• params (dict) – Booster params.

• dtrain (DMatrix) – Data to be trained.

• num_boost_round (int) – Number of boosting iterations.

• nfold (int) – Number of folds in CV.

• stratified (bool) – Perform stratified sampling.

• folds (a KFold or StratifiedKFold instance or list of fold indices) –
Sklearn KFolds or StratifiedKFolds object. Alternatively may explicitly pass sample indices
for each fold. For n folds, folds should be a length n list of tuples. Each tuple is (in,out)
where in is a list of indices to be used as the training samples for the n th fold and out is a
list of indices to be used as the testing samples for the n th fold.

• metrics (string or list of strings) – Evaluation metrics to be watched in CV.

• obj (Callable[[ndarray, DMatrix], Tuple[ndarray, ndarray]] | None) –
Custom objective function. See Custom Objective for details.

• feval (function) – Deprecated since version 1.6.0: Use custom_metric instead.

• maximize (bool) – Whether to maximize feval.

• early_stopping_rounds (int) – Activates early stopping. Cross-Validation metric (av-
erage of validation metric computed over CV folds) needs to improve at least once in every
early_stopping_rounds round(s) to continue training. The last entry in the evaluation his-
tory will represent the best iteration. If there’s more than one metric in the eval_metric
parameter given in params, the last metric will be used for early stopping.

• fpreproc (function) – Preprocessing function that takes (dtrain, dtest, param) and returns
transformed versions of those.

• as_pandas (bool, default True) – Return pd.DataFrame when pandas is installed. If
False or pandas is not installed, return np.ndarray

• verbose_eval (bool, int, or None, default None) – Whether to display the
progress. If None, progress will be displayed when np.ndarray is returned. If True, progress
will be displayed at boosting stage. If an integer is given, progress will be displayed at every
given verbose_eval boosting stage.

• show_stdv (bool, default True) – Whether to display the standard deviation in
progress. Results are not affected, and always contains std.

• seed (int) – Seed used to generate the folds (passed to numpy.random.seed).

• callbacks (Sequence[TrainingCallback] | None) – List of callback functions that
are applied at end of each iteration. It is possible to use predefined callbacks by using Call-
back API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.
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for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• shuffle (bool) – Shuffle data before creating folds.

• custom_metric (Callable[[ndarray, DMatrix], Tuple[str, float]] | None)
– Custom metric function. See Custom Metric for details.

Returns
evaluation history

Return type
list(string)

Scikit-Learn API

Scikit-Learn Wrapper interface for XGBoost.

class xgboost.XGBRegressor(*, objective='reg:squarederror', **kwargs)
Bases: XGBModel, RegressorMixin

Implementation of the scikit-learn API for XGBoost regression.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.
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• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.
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• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.
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from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case, it
should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples]
The target values
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y_pred: array_like of shape [n_samples]
The predicted values

grad: array_like of shape [n_samples]
The value of the gradient for each sample point.

hess: array_like of shape [n_samples]
The value of the second derivative for each sample point

apply(X, ntree_limit=0, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:
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{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting model.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (Any) – Feature matrix

• y (Any) – Labels

• sample_weight (Any | None) – instance weights

• base_margin (Any | None) – global bias for each instance.

• eval_set (Sequence[Tuple[Any, Any]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us track
the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (bool | int | None) – If verbose is True and an evaluation set is used, the
evaluation metric measured on the validation set is printed to stdout at each boosting stage.
If verbose is an integer, the evaluation metric is printed at each verbose boosting stage.
The last boosting stage / the boosting stage found by using early_stopping_rounds is also
printed.

• xgb_model (Booster | XGBModel | str | None) – file name of stored XGBoost
model or ‘Booster’ instance XGBoost model to be loaded before training (allows training
continuation).
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• sample_weight_eval_set (Sequence[Any] | None) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is an array like object storing instance weights for the i-th vali-
dation set.

• base_margin_eval_set (Sequence[Any] | None) – A list of the form [M_1, M_2,
. . . , M_n], where each M_i is an array like object storing base margin for the i-th validation
set.

• feature_weights (Any | None) – Weight for each feature, defines the probability of
each feature being selected when colsample is being used. All values must be greater than
0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
XGBModel

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_
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Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (Any) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (Any | None) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction
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save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣 ), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples. For some es-
timators this may be a precomputed kernel matrix or a list of generic objects instead with
shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of
samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
values for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self
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Parameters
params (Any) –

class xgboost.XGBClassifier(*, objective='binary:logistic', use_label_encoder=None, **kwargs)
Bases: XGBModel, ClassifierMixin

Implementation of the scikit-learn API for XGBoost classification.

Parameters

• n_estimators (int) – Number of boosting rounds.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.
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• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental
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A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.
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Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case, it
should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples]
The target values

y_pred: array_like of shape [n_samples]
The predicted values

grad: array_like of shape [n_samples]
The value of the gradient for each sample point.

hess: array_like of shape [n_samples]
The value of the second derivative for each sample point

• use_label_encoder (bool | None) –

apply(X, ntree_limit=0, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int) – Deprecated, use iteration_range instead.
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Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)
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property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting classifier.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (Any) – Feature matrix

• y (Any) – Labels

• sample_weight (Any | None) – instance weights

• base_margin (Any | None) – global bias for each instance.

• eval_set (Sequence[Tuple[Any, Any]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us track
the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (bool | int | None) – If verbose is True and an evaluation set is used, the
evaluation metric measured on the validation set is printed to stdout at each boosting stage.
If verbose is an integer, the evaluation metric is printed at each verbose boosting stage.
The last boosting stage / the boosting stage found by using early_stopping_rounds is also
printed.

• xgb_model (Booster | str | XGBModel | None) – file name of stored XGBoost
model or ‘Booster’ instance XGBoost model to be loaded before training (allows training
continuation).

• sample_weight_eval_set (Sequence[Any] | None) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is an array like object storing instance weights for the i-th vali-
dation set.

• base_margin_eval_set (Sequence[Any] | None) – A list of the form [M_1, M_2,
. . . , M_n], where each M_i is an array like object storing base margin for the i-th validation
set.

• feature_weights (Any | None) – Weight for each feature, defines the probability of
each feature being selected when colsample is being used. All values must be greater than
0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
XGBClassifier

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called
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Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None
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property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (Any) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (Any | None) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

predict_proba(X, ntree_limit=None, validate_features=True, base_margin=None, iteration_range=None)
Predict the probability of each X example being of a given class.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (array_like) – Feature matrix.

• ntree_limit (int) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (array_like) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open set)
rounds are used in this prediction.

Returns
a numpy array of shape array-like of shape (n_samples, n_classes) with the probability of
each data example being of a given class.
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Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – Mean accuracy of self.predict(X) w.r.t. y.

Return type
float

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.XGBRanker(*, objective='rank:pairwise', **kwargs)
Bases: XGBModel, XGBRankerMixIn

Implementation of the Scikit-Learn API for XGBoost Ranking.

Parameters
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• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.
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• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.
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• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.
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• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: The default objective for XGBRanker is “rank:pairwise”

Note: A custom objective function is currently not supported by XGBRanker. Likewise, a
custom metric function is not supported either.

Note: Query group information is required for ranking tasks by either using the group
parameter or qid parameter in fit method. This information is not required in ‘predict’ method
and multiple groups can be predicted on a single call to predict.

When fitting the model with the group parameter, your data need to be sorted by query group
first. group must be an array that contains the size of each query group. When fitting the
model with the qid parameter, your data does not need sorting. qid must be an array that
contains the group of each training sample.

For example, if your original data look like:

qid label features
1 0 x_1
1 1 x_2
1 0 x_3
2 0 x_4
2 1 x_5
2 1 x_6
2 1 x_7

then fit method can be called with either group array as [3, 4] or with qid as [`1, 1, 1,
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2, 2, 2, 2], that is the qid column.

apply(X, ntree_limit=0, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result
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property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, group=None, qid=None, sample_weight=None, base_margin=None, eval_set=None,
eval_group=None, eval_qid=None, eval_metric=None, early_stopping_rounds=None, verbose=False,
xgb_model=None, sample_weight_eval_set=None, base_margin_eval_set=None, feature_weights=None,
callbacks=None)
Fit gradient boosting ranker

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (Any) – Feature matrix

• y (Any) – Labels

• group (Any | None) – Size of each query group of training data. Should have as many
elements as the query groups in the training data. If this is set to None, then user must
provide qid.

• qid (Any | None) – Query ID for each training sample. Should have the size of
n_samples. If this is set to None, then user must provide group.

• sample_weight (Any | None) – Query group weights

Note: Weights are per-group for ranking tasks

In ranking task, one weight is assigned to each query group/id (not each data point). This
is because we only care about the relative ordering of data points within each group, so it
doesn’t make sense to assign weights to individual data points.

• base_margin (Any | None) – Global bias for each instance.

• eval_set (Sequence[Tuple[Any, Any]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us track
the performance of the model.

• eval_group (Sequence[Any] | None) – A list in which eval_group[i] is the list
containing the sizes of all query groups in the i-th pair in eval_set.

• eval_qid (Sequence[Any] | None) – A list in which eval_qid[i] is the array con-
taining query ID of i-th pair in eval_set.

• eval_metric (str, list of str, optional) – Deprecated since version 1.6.0: use
eval_metric in __init__() or set_params() instead.
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• early_stopping_rounds (int) – Deprecated since version 1.6.0: use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (bool | int | None) – If verbose is True and an evaluation set is used, the
evaluation metric measured on the validation set is printed to stdout at each boosting stage.
If verbose is an integer, the evaluation metric is printed at each verbose boosting stage.
The last boosting stage / the boosting stage found by using early_stopping_rounds is also
printed.

• xgb_model (Booster | str | XGBModel | None) – file name of stored XGBoost
model or ‘Booster’ instance XGBoost model to be loaded before training (allows training
continuation).

• sample_weight_eval_set (Sequence[Any] | None) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is a list of group weights on the i-th validation set.

Note: Weights are per-group for ranking tasks

In ranking task, one weight is assigned to each query group (not each data point). This
is because we only care about the relative ordering of data points within each group, so it
doesn’t make sense to assign weights to individual data points.

• base_margin_eval_set (Sequence[Any] | None) – A list of the form [M_1, M_2,
. . . , M_n], where each M_i is an array like object storing base margin for the i-th validation
set.

• feature_weights (Any | None) – Weight for each feature, defines the probability of
each feature being selected when colsample is being used. All values must be greater than
0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
XGBRanker

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –
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Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters
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• X (Any) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (Any | None) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.XGBRFRegressor(*, learning_rate=1.0, subsample=0.8, colsample_bynode=0.8,
reg_lambda=1e-05, **kwargs)

Bases: XGBRegressor

scikit-learn API for XGBoost random forest regression.

Parameters

• n_estimators (int) – Number of trees in random forest to fit.

• max_depth (Optional[int]) – Maximum tree depth for base learners.
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• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

164 Chapter 1. Contents

https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/typing.html#typing.Union
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.Callable
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.8/library/typing.html#typing.Tuple
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://docs.python.org/3.8/library/functions.html#float
https://numpy.org/doc/stable/reference/random/legacy.html#numpy.random.RandomState
https://docs.python.org/3.8/library/functions.html#int


xgboost, Release 1.7.6

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental
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Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
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can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case, it
should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples]
The target values

y_pred: array_like of shape [n_samples]
The predicted values

grad: array_like of shape [n_samples]
The value of the gradient for each sample point.

hess: array_like of shape [n_samples]
The value of the second derivative for each sample point

apply(X, ntree_limit=0, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.
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property best_score: float

The best score obtained by early stopping.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting model.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters
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• X (Any) – Feature matrix

• y (Any) – Labels

• sample_weight (Any | None) – instance weights

• base_margin (Any | None) – global bias for each instance.

• eval_set (Sequence[Tuple[Any, Any]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us track
the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (bool | int | None) – If verbose is True and an evaluation set is used, the
evaluation metric measured on the validation set is printed to stdout at each boosting stage.
If verbose is an integer, the evaluation metric is printed at each verbose boosting stage.
The last boosting stage / the boosting stage found by using early_stopping_rounds is also
printed.

• xgb_model (Booster | str | XGBModel | None) – file name of stored XGBoost
model or ‘Booster’ instance XGBoost model to be loaded before training (allows training
continuation).

• sample_weight_eval_set (Sequence[Any] | None) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is an array like object storing instance weights for the i-th vali-
dation set.

• base_margin_eval_set (Sequence[Any] | None) – A list of the form [M_1, M_2,
. . . , M_n], where each M_i is an array like object storing base margin for the i-th validation
set.

• feature_weights (Any | None) – Weight for each feature, defines the probability of
each feature being selected when colsample is being used. All values must be greater than
0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
XGBRFRegressor

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int
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get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.
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Note: This function is only thread safe for gbtree and dart.

Parameters

• X (Any) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (Any | None) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣 ), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples. For some es-
timators this may be a precomputed kernel matrix or a list of generic objects instead with
shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of
samples used in the fitting for the estimator.
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• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
values for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.XGBRFClassifier(*, learning_rate=1.0, subsample=0.8, colsample_bynode=0.8,
reg_lambda=1e-05, **kwargs)

Bases: XGBClassifier

scikit-learn API for XGBoost random forest classification.

Parameters

• n_estimators (int) – Number of trees in random forest to fit.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.
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• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation
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• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.
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For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
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this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case, it
should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples]
The target values

y_pred: array_like of shape [n_samples]
The predicted values

grad: array_like of shape [n_samples]
The value of the gradient for each sample point.

hess: array_like of shape [n_samples]
The value of the second derivative for each sample point

apply(X, ntree_limit=0, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_
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Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting classifier.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (Any) – Feature matrix

• y (Any) – Labels

• sample_weight (Any | None) – instance weights

• base_margin (Any | None) – global bias for each instance.

• eval_set (Sequence[Tuple[Any, Any]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us track
the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.
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• verbose (bool | int | None) – If verbose is True and an evaluation set is used, the
evaluation metric measured on the validation set is printed to stdout at each boosting stage.
If verbose is an integer, the evaluation metric is printed at each verbose boosting stage.
The last boosting stage / the boosting stage found by using early_stopping_rounds is also
printed.

• xgb_model (Booster | str | XGBModel | None) – file name of stored XGBoost
model or ‘Booster’ instance XGBoost model to be loaded before training (allows training
continuation).

• sample_weight_eval_set (Sequence[Any] | None) – A list of the form [L_1, L_2,
. . . , L_n], where each L_i is an array like object storing instance weights for the i-th vali-
dation set.

• base_margin_eval_set (Sequence[Any] | None) – A list of the form [M_1, M_2,
. . . , M_n], where each M_i is an array like object storing base margin for the i-th validation
set.

• feature_weights (Any | None) – Weight for each feature, defines the probability of
each feature being selected when colsample is being used. All values must be greater than
0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
XGBRFClassifier

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]
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property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (Any) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (Any | None) – Margin added to prediction.

1.10. XGBoost Python Package 179

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#bytearray
https://docs.python.org/3.8/library/os.html#os.PathLike
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/typing.html#typing.Any
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/typing.html#typing.Any


xgboost, Release 1.7.6

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

predict_proba(X, ntree_limit=None, validate_features=True, base_margin=None, iteration_range=None)
Predict the probability of each X example being of a given class.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (array_like) – Feature matrix.

• ntree_limit (int) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (array_like) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open set)
rounds are used in this prediction.

Returns
a numpy array of shape array-like of shape (n_samples, n_classes) with the probability of
each data example being of a given class.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None
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score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – Mean accuracy of self.predict(X) w.r.t. y.

Return type
float

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

Plotting API

Plotting Library.

xgboost.plot_importance(booster, ax=None, height=0.2, xlim=None, ylim=None, title='Feature importance',
xlabel='F score', ylabel='Features', fmap='', importance_type='weight',
max_num_features=None, grid=True, show_values=True, **kwargs)

Plot importance based on fitted trees.

Parameters

• booster (Booster, XGBModel or dict) – Booster or XGBModel instance, or dict taken
by Booster.get_fscore()

• ax (matplotlib Axes, default None) – Target axes instance. If None, new figure and
axes will be created.

• grid (bool, Turn the axes grids on or off. Default is True (On).) –

• importance_type (str, default "weight") – How the importance is calculated: either
“weight”, “gain”, or “cover”

– ”weight” is the number of times a feature appears in a tree

– ”gain” is the average gain of splits which use the feature

– ”cover” is the average coverage of splits which use the feature where coverage is defined
as the number of samples affected by the split
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• max_num_features (int, default None) – Maximum number of top features displayed
on plot. If None, all features will be displayed.

• height (float, default 0.2) – Bar height, passed to ax.barh()

• xlim (tuple, default None) – Tuple passed to axes.xlim()

• ylim (tuple, default None) – Tuple passed to axes.ylim()

• title (str, default "Feature importance") – Axes title. To disable, pass None.

• xlabel (str, default "F score") – X axis title label. To disable, pass None.

• ylabel (str, default "Features") – Y axis title label. To disable, pass None.

• fmap (str or os.PathLike (optional)) – The name of feature map file.

• show_values (bool, default True) – Show values on plot. To disable, pass False.

• kwargs (Any) – Other keywords passed to ax.barh()

Returns
ax

Return type
matplotlib Axes

xgboost.plot_tree(booster, fmap='', num_trees=0, rankdir=None, ax=None, **kwargs)
Plot specified tree.

Parameters

• booster (Booster, XGBModel) – Booster or XGBModel instance

• fmap (str (optional)) – The name of feature map file

• num_trees (int, default 0) – Specify the ordinal number of target tree

• rankdir (str, default "TB") – Passed to graphviz via graph_attr

• ax (matplotlib Axes, default None) – Target axes instance. If None, new figure and
axes will be created.

• kwargs (Any) – Other keywords passed to to_graphviz

Returns
ax

Return type
matplotlib Axes

xgboost.to_graphviz(booster, fmap='', num_trees=0, rankdir=None, yes_color=None, no_color=None,
condition_node_params=None, leaf_node_params=None, **kwargs)

Convert specified tree to graphviz instance. IPython can automatically plot the returned graphviz instance. Oth-
erwise, you should call .render() method of the returned graphviz instance.

Parameters

• booster (Booster, XGBModel) – Booster or XGBModel instance

• fmap (str (optional)) – The name of feature map file

• num_trees (int, default 0) – Specify the ordinal number of target tree

• rankdir (str, default "UT") – Passed to graphviz via graph_attr

• yes_color (str, default '#0000FF') – Edge color when meets the node condition.
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• no_color (str, default '#FF0000') – Edge color when doesn’t meet the node condition.

• condition_node_params (dict, optional) – Condition node configuration for for
graphviz. Example:

{'shape': 'box',
'style': 'filled,rounded',
'fillcolor': '#78bceb'}

• leaf_node_params (dict, optional) – Leaf node configuration for graphviz. Example:

{'shape': 'box',
'style': 'filled',
'fillcolor': '#e48038'}

• **kwargs (dict, optional) – Other keywords passed to graphviz graph_attr, e.g. graph
[ {key} = {value} ]

Returns
graph

Return type
graphviz.Source

Callback API

Callback library containing training routines. See Callback Functions for a quick introduction.

class xgboost.callback.TrainingCallback

Interface for training callback.

New in version 1.3.0.

after_iteration(model, epoch, evals_log)
Run after each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

after_training(model)
Run after training is finished.

Parameters
model (Any) –

Return type
Any
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before_iteration(model, epoch, evals_log)
Run before each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

before_training(model)
Run before training starts.

Parameters
model (Any) –

Return type
Any

class xgboost.callback.EvaluationMonitor(rank=0, period=1, show_stdv=False)
Bases: TrainingCallback

Print the evaluation result at each iteration.

New in version 1.3.0.

Parameters

• metric – Extra user defined metric.

• rank (int) – Which worker should be used for printing the result.

• period (int) – How many epoches between printing.

• show_stdv (bool) – Used in cv to show standard deviation. Users should not specify it.

after_iteration(model, epoch, evals_log)
Run after each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

after_training(model)
Run after training is finished.

Parameters
model (Any) –

Return type
Any
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before_iteration(model, epoch, evals_log)
Run before each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

before_training(model)
Run before training starts.

Parameters
model (Any) –

Return type
Any

class xgboost.callback.EarlyStopping(rounds, metric_name=None, data_name=None, maximize=None,
save_best=False, min_delta=0.0)

Bases: TrainingCallback

Callback function for early stopping

New in version 1.3.0.

Parameters

• rounds (int) – Early stopping rounds.

• metric_name (str | None) – Name of metric that is used for early stopping.

• data_name (str | None) – Name of dataset that is used for early stopping.

• maximize (bool | None) – Whether to maximize evaluation metric. None means auto
(discouraged).

• save_best (bool | None) – Whether training should return the best model or the last
model.

• min_delta (float) – Minimum absolute change in score to be qualified as an improvement.

New in version 1.5.0.

clf = xgboost.XGBClassifier(tree_method="gpu_hist")
es = xgboost.callback.EarlyStopping(

rounds=2,
abs_tol=1e-3,
save_best=True,
maximize=False,
data_name="validation_0",
metric_name="mlogloss",

)

X, y = load_digits(return_X_y=True)
clf.fit(X, y, eval_set=[(X, y)], callbacks=[es])
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after_iteration(model, epoch, evals_log)
Run after each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

after_training(model)
Run after training is finished.

Parameters
model (Any) –

Return type
Any

before_iteration(model, epoch, evals_log)
Run before each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

before_training(model)
Run before training starts.

Parameters
model (Any) –

Return type
Any

class xgboost.callback.LearningRateScheduler(learning_rates)
Bases: TrainingCallback

Callback function for scheduling learning rate.

New in version 1.3.0.

Parameters
learning_rates (Callable[[int], float] | Sequence[float]) – If it’s a callable ob-
ject, then it should accept an integer parameter epoch and returns the corresponding learning rate.
Otherwise it should be a sequence like list or tuple with the same size of boosting rounds.

after_iteration(model, epoch, evals_log)
Run after each iteration. Return True when training should stop.

Parameters
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• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

after_training(model)
Run after training is finished.

Parameters
model (Any) –

Return type
Any

before_iteration(model, epoch, evals_log)
Run before each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

before_training(model)
Run before training starts.

Parameters
model (Any) –

Return type
Any

class xgboost.callback.TrainingCheckPoint(directory, name='model', as_pickle=False, iterations=100)
Bases: TrainingCallback

Checkpointing operation.

New in version 1.3.0.

Parameters

• directory (str | PathLike) – Output model directory.

• name (str) – pattern of output model file. Models will be saved as name_0.json,
name_1.json, name_2.json . . . .

• as_pickle (bool) – When set to True, all training parameters will be saved in pickle format,
instead of saving only the model.

• iterations (int) – Interval of checkpointing. Checkpointing is slow so setting a larger
number can reduce performance hit.
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after_iteration(model, epoch, evals_log)
Run after each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

after_training(model)
Run after training is finished.

Parameters
model (Any) –

Return type
Any

before_iteration(model, epoch, evals_log)
Run before each iteration. Return True when training should stop.

Parameters

• model (Any) –

• epoch (int) –

• evals_log (Dict[str, Dict[str, List[float] | List[Tuple[float,
float]]]]) –

Return type
bool

before_training(model)
Run before training starts.

Parameters
model (Any) –

Return type
Any

Dask API

Dask extensions for distributed training

See Distributed XGBoost with Dask for simple tutorial. Also XGBoost Dask Feature Walkthrough for some examples.

There are two sets of APIs in this module, one is the functional API including train and predict methods. Another
is stateful Scikit-Learner wrapper inherited from single-node Scikit-Learn interface.

The implementation is heavily influenced by dask_xgboost: https://github.com/dask/dask-xgboost
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Optional dask configuration

• xgboost.scheduler_address: Specify the scheduler address, see Troubleshooting.

New in version 1.6.0.

dask.config.set({"xgboost.scheduler_address": "192.0.0.100"})
# We can also specify the port.
dask.config.set({"xgboost.scheduler_address": "192.0.0.100:12345"})

class xgboost.dask.DaskDMatrix(client, data, label=None, *, weight=None, base_margin=None,
missing=None, silent=False, feature_names=None, feature_types=None,
group=None, qid=None, label_lower_bound=None,
label_upper_bound=None, feature_weights=None,
enable_categorical=False)

Bases: object

DMatrix holding on references to Dask DataFrame or Dask Array. Constructing a DaskDMatrix forces all lazy
computation to be carried out. Wait for the input data explicitly if you want to see actual computation of con-
structing DaskDMatrix.

See doc for xgboost.DMatrix constructor for other parameters. DaskDMatrix accepts only dask collection.

Note: DaskDMatrix does not repartition or move data between workers. It’s the caller’s responsibility to balance
the data.

New in version 1.0.0.

Parameters

• client (distributed.Client) – Specify the dask client used for training. Use default
client returned from dask if it’s set to None.

• data (da.Array | dd.DataFrame) –

• label (da.Array | dd.DataFrame | dd.Series | None) –

• weight (da.Array | dd.DataFrame | dd.Series | None) –

• base_margin (da.Array | dd.DataFrame | dd.Series | None) –

• missing (float) –

• silent (bool) –

• feature_names (Sequence[str] | None) –

• feature_types (Sequence[str]) –

• group (da.Array | dd.DataFrame | dd.Series | None) –

• qid (da.Array | dd.DataFrame | dd.Series | None) –

• label_lower_bound (da.Array | dd.DataFrame | dd.Series | None) –

• label_upper_bound (da.Array | dd.DataFrame | dd.Series | None) –

• feature_weights (da.Array | dd.DataFrame | dd.Series | None) –

• enable_categorical (bool) –
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num_col()

Get the number of columns (features) in the DMatrix.

Return type
number of columns

class xgboost.dask.DaskQuantileDMatrix(client, data, label=None, *, weight=None, base_margin=None,
missing=None, silent=False, feature_names=None,
feature_types=None, max_bin=None, ref=None, group=None,
qid=None, label_lower_bound=None, label_upper_bound=None,
feature_weights=None, enable_categorical=False)

Bases: DaskDMatrix

Parameters

• client (distributed.Client) –

• data (da.Array | dd.DataFrame) –

• label (da.Array | dd.DataFrame | dd.Series | None) –

• weight (da.Array | dd.DataFrame | dd.Series | None) –

• base_margin (da.Array | dd.DataFrame | dd.Series | None) –

• missing (float) –

• silent (bool) –

• feature_names (Sequence[str] | None) –

• feature_types (Any | List[Any] | None) –

• max_bin (int | None) –

• ref (DMatrix | None) –

• group (da.Array | dd.DataFrame | dd.Series | None) –

• qid (da.Array | dd.DataFrame | dd.Series | None) –

• label_lower_bound (da.Array | dd.DataFrame | dd.Series | None) –

• label_upper_bound (da.Array | dd.DataFrame | dd.Series | None) –

• feature_weights (da.Array | dd.DataFrame | dd.Series | None) –

• enable_categorical (bool) –

num_col()

Get the number of columns (features) in the DMatrix.

Return type
number of columns

xgboost.dask.train(client, params, dtrain, num_boost_round=10, *, evals=None, obj=None, feval=None,
early_stopping_rounds=None, xgb_model=None, verbose_eval=True, callbacks=None,
custom_metric=None)

Train XGBoost model.

New in version 1.0.0.

Note: Other parameters are the same as xgboost.train() except for evals_result, which is returned as part
of function return value instead of argument.
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Parameters

• client (distributed.Client) – Specify the dask client used for training. Use default
client returned from dask if it’s set to None.

• params (Dict[str, Any]) –

• dtrain (DaskDMatrix) –

• num_boost_round (int) –

• evals (Sequence[Tuple[DaskDMatrix, str]] | None) –

• obj (Callable[[ndarray, DMatrix], Tuple[ndarray, ndarray]] | None) –

• feval (Callable[[ndarray, DMatrix], Tuple[str, float]] | None) –

• early_stopping_rounds (int | None) –

• xgb_model (Booster | None) –

• verbose_eval (int | bool) –

• callbacks (Sequence[TrainingCallback] | None) –

• custom_metric (Callable[[ndarray, DMatrix], Tuple[str, float]] | None)
–

Returns

results – A dictionary containing trained booster and evaluation history. history field is the same
as eval_result from xgboost.train.

{'booster': xgboost.Booster,
'history': {'train': {'logloss': ['0.48253', '0.35953']},

'eval': {'logloss': ['0.480385', '0.357756']}}}

Return type
dict

xgboost.dask.predict(client, model, data, output_margin=False, missing=nan, pred_leaf=False,
pred_contribs=False, approx_contribs=False, pred_interactions=False,
validate_features=True, iteration_range=(0, 0), strict_shape=False)

Run prediction with a trained booster.

Note: Using inplace_predict might be faster when some features are not needed. See xgboost.Booster.
predict() for details on various parameters. When output has more than 2 dimensions (shap value, leaf with
strict_shape), input should be da.Array or DaskDMatrix.

New in version 1.0.0.

Parameters

• client (distributed.Client | None) – Specify the dask client used for training. Use
default client returned from dask if it’s set to None.

• model (TrainReturnT | Booster | distributed.Future) – The trained model. It
can be a distributed.Future so user can pre-scatter it onto all workers.

• data (DaskDMatrix | da.Array | dd.DataFrame) – Input data used for prediction.
When input is a dataframe object, prediction output is a series.
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• missing (float) – Used when input data is not DaskDMatrix. Specify the value considered
as missing.

• output_margin (bool) –

• pred_leaf (bool) –

• pred_contribs (bool) –

• approx_contribs (bool) –

• pred_interactions (bool) –

• validate_features (bool) –

• iteration_range (Tuple[int, int]) –

• strict_shape (bool) –

Returns
prediction – When input data is dask.array.Array or DaskDMatrix, the return value is an
array, when input data is dask.dataframe.DataFrame, return value can be dask.dataframe.
Series, dask.dataframe.DataFrame, depending on the output shape.

Return type
dask.array.Array/dask.dataframe.Series

xgboost.dask.inplace_predict(client, model, data, iteration_range=(0, 0), predict_type='value', missing=nan,
validate_features=True, base_margin=None, strict_shape=False)

Inplace prediction. See doc in xgboost.Booster.inplace_predict() for details.

New in version 1.1.0.

Parameters

• client (distributed.Client | None) – Specify the dask client used for training. Use
default client returned from dask if it’s set to None.

• model (TrainReturnT | Booster | distributed.Future) – See xgboost.dask.
predict() for details.

• data (da.Array | dd.DataFrame) – dask collection.

• iteration_range (Tuple[int, int]) – See xgboost.Booster.predict() for de-
tails.

• predict_type (str) – See xgboost.Booster.inplace_predict() for details.

• missing (float) – Value in the input data which needs to be present as a missing value. If
None, defaults to np.nan.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – See xgboost.
DMatrix for details.

New in version 1.4.0.

• strict_shape (bool) – See xgboost.Booster.predict() for details.

New in version 1.4.0.

• validate_features (bool) –

Returns
When input data is dask.array.Array, the return value is an array, when input data is dask.
dataframe.DataFrame, return value can be dask.dataframe.Series, dask.dataframe.
DataFrame, depending on the output shape.
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Return type
prediction

class xgboost.dask.DaskXGBClassifier(max_depth=None, max_leaves=None, max_bin=None,
grow_policy=None, learning_rate=None, n_estimators=100,
verbosity=None, objective=None, booster=None,
tree_method=None, n_jobs=None, gamma=None,
min_child_weight=None, max_delta_step=None, subsample=None,
sampling_method=None, colsample_bytree=None,
colsample_bylevel=None, colsample_bynode=None,
reg_alpha=None, reg_lambda=None, scale_pos_weight=None,
base_score=None, random_state=None, missing=nan,
num_parallel_tree=None, monotone_constraints=None,
interaction_constraints=None, importance_type=None,
gpu_id=None, validate_parameters=None, predictor=None,
enable_categorical=False, feature_types=None,
max_cat_to_onehot=None, max_cat_threshold=None,
eval_metric=None, early_stopping_rounds=None, callbacks=None,
**kwargs)

Bases: DaskScikitLearnBase, ClassifierMixin

Implementation of the scikit-learn API for XGBoost classification.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves (int | None) – Maximum number of leaves; 0 indicates no limit.

• max_bin (int | None) – If using histogram-based algorithm, maximum number of bins
per feature

• grow_policy (str | None) – Tree growing policy. 0: favor splitting at nodes closest to
the node, i.e. grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.
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• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method (str | None) –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.
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• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.
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from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

apply(X, ntree_limit=None, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.
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• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property client: distributed.Client

The dask client used in this model. The Client object can not be serialized for transmission, so if task is
launched from a worker instead of directly from the client process, this attribute needs to be set at that
worker.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result
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property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting model.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (da.Array | dd.DataFrame) – Feature matrix

• y (da.Array | dd.DataFrame | dd.Series) – Labels

• sample_weight (da.Array | dd.DataFrame | dd.Series | None) – instance
weights

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – global bias for
each instance.

• eval_set (Sequence[Tuple[da.Array | dd.DataFrame | dd.Series, da.
Array | dd.DataFrame | dd.Series]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us
track the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (int | bool) – If verbose is True and an evaluation set is used, the evaluation
metric measured on the validation set is printed to stdout at each boosting stage. If verbose
is an integer, the evaluation metric is printed at each verbose boosting stage. The last
boosting stage / the boosting stage found by using early_stopping_rounds is also printed.

• xgb_model (Booster | XGBModel | None) – file name of stored XGBoost model or
‘Booster’ instance XGBoost model to be loaded before training (allows training continua-
tion).

• sample_weight_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series]
| None) – A list of the form [L_1, L_2, . . . , L_n], where each L_i is an array like object
storing instance weights for the i-th validation set.

• base_margin_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series] |
None) – A list of the form [M_1, M_2, . . . , M_n], where each M_i is an array like object
storing base margin for the i-th validation set.
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• feature_weights (da.Array | dd.DataFrame | dd.Series | None) – Weight
for each feature, defines the probability of each feature being selected when colsample
is being used. All values must be greater than 0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
DaskXGBClassifier

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]
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load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (da.Array | dd.DataFrame) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – Margin added
to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

predict_proba(X, ntree_limit=None, validate_features=True, base_margin=None, iteration_range=None)
Predict the probability of each X example being of a given class.
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Note: This function is only thread safe for gbtree and dart.

Parameters

• X (array_like) – Feature matrix.

• ntree_limit (int) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (array_like) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open set)
rounds are used in this prediction.

Returns
a numpy array of shape array-like of shape (n_samples, n_classes) with the probability of
each data example being of a given class.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.
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Returns
score – Mean accuracy of self.predict(X) w.r.t. y.

Return type
float

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.dask.DaskXGBRegressor(max_depth=None, max_leaves=None, max_bin=None,
grow_policy=None, learning_rate=None, n_estimators=100,
verbosity=None, objective=None, booster=None, tree_method=None,
n_jobs=None, gamma=None, min_child_weight=None,
max_delta_step=None, subsample=None, sampling_method=None,
colsample_bytree=None, colsample_bylevel=None,
colsample_bynode=None, reg_alpha=None, reg_lambda=None,
scale_pos_weight=None, base_score=None, random_state=None,
missing=nan, num_parallel_tree=None,
monotone_constraints=None, interaction_constraints=None,
importance_type=None, gpu_id=None, validate_parameters=None,
predictor=None, enable_categorical=False, feature_types=None,
max_cat_to_onehot=None, max_cat_threshold=None,
eval_metric=None, early_stopping_rounds=None, callbacks=None,
**kwargs)

Bases: DaskScikitLearnBase, RegressorMixin

Implementation of the Scikit-Learn API for XGBoost.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves (int | None) – Maximum number of leaves; 0 indicates no limit.

• max_bin (int | None) – If using histogram-based algorithm, maximum number of bins
per feature

• grow_policy (str | None) – Tree growing policy. 0: favor splitting at nodes closest to
the node, i.e. grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).
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• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method (str | None) –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
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indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.
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Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.
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Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

apply(X, ntree_limit=None, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property client: distributed.Client

The dask client used in this model. The Client object can not be serialized for transmission, so if task is
launched from a worker instead of directly from the client process, this attribute needs to be set at that
worker.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.
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The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting model.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (da.Array | dd.DataFrame) – Feature matrix

• y (da.Array | dd.DataFrame | dd.Series) – Labels

• sample_weight (da.Array | dd.DataFrame | dd.Series | None) – instance
weights

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – global bias for
each instance.

• eval_set (Sequence[Tuple[da.Array | dd.DataFrame | dd.Series, da.
Array | dd.DataFrame | dd.Series]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us
track the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (int | bool) – If verbose is True and an evaluation set is used, the evaluation
metric measured on the validation set is printed to stdout at each boosting stage. If verbose
is an integer, the evaluation metric is printed at each verbose boosting stage. The last
boosting stage / the boosting stage found by using early_stopping_rounds is also printed.
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• xgb_model (Booster | XGBModel | None) – file name of stored XGBoost model or
‘Booster’ instance XGBoost model to be loaded before training (allows training continua-
tion).

• sample_weight_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series]
| None) – A list of the form [L_1, L_2, . . . , L_n], where each L_i is an array like object
storing instance weights for the i-th validation set.

• base_margin_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series] |
None) – A list of the form [M_1, M_2, . . . , M_n], where each M_i is an array like object
storing base margin for the i-th validation set.

• feature_weights (da.Array | dd.DataFrame | dd.Series | None) – Weight
for each feature, defines the probability of each feature being selected when colsample
is being used. All values must be greater than 0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
DaskXGBRegressor

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).
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Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (da.Array | dd.DataFrame) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – Margin added
to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.
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Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣 ), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples. For some es-
timators this may be a precomputed kernel matrix or a list of generic objects instead with
shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of
samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
values for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float
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Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.dask.DaskXGBRanker(*, objective='rank:pairwise', **kwargs)
Bases: DaskScikitLearnBase, XGBRankerMixIn

Implementation of the Scikit-Learn API for XGBoost Ranking.

New in version 1.4.0.

Parameters

• n_estimators (int) – Number of gradient boosted trees. Equivalent to number of boosting
rounds.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.
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• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.
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• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.
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from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: For dask implementation, group is not supported, use qid instead.

apply(X, ntree_limit=None, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.
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Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property client: distributed.Client

The dask client used in this model. The Client object can not be serialized for transmission, so if task is
launched from a worker instead of directly from the client process, this attribute needs to be set at that
worker.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result
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property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, group=None, qid=None, sample_weight=None, base_margin=None, eval_set=None,
eval_group=None, eval_qid=None, eval_metric=None, early_stopping_rounds=None, verbose=False,
xgb_model=None, sample_weight_eval_set=None, base_margin_eval_set=None, feature_weights=None,
callbacks=None)
Fit gradient boosting ranker

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (da.Array | dd.DataFrame) – Feature matrix

• y (da.Array | dd.DataFrame | dd.Series) – Labels

• group (da.Array | dd.DataFrame | dd.Series | None) – Size of each query
group of training data. Should have as many elements as the query groups in the train-
ing data. If this is set to None, then user must provide qid.

• qid (da.Array | dd.DataFrame | dd.Series | None) – Query ID for each training
sample. Should have the size of n_samples. If this is set to None, then user must provide
group.

• sample_weight (da.Array | dd.DataFrame | dd.Series | None) – Query group
weights

Note: Weights are per-group for ranking tasks

In ranking task, one weight is assigned to each query group/id (not each data point). This
is because we only care about the relative ordering of data points within each group, so it
doesn’t make sense to assign weights to individual data points.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – Global bias for
each instance.

• eval_set (Sequence[Tuple[da.Array | dd.DataFrame | dd.Series, da.
Array | dd.DataFrame | dd.Series]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us
track the performance of the model.

• eval_group (Sequence[da.Array | dd.DataFrame | dd.Series] | None) – A
list in which eval_group[i] is the list containing the sizes of all query groups in the
i-th pair in eval_set.
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• eval_qid (Sequence[da.Array | dd.DataFrame | dd.Series] | None) – A list
in which eval_qid[i] is the array containing query ID of i-th pair in eval_set.

• eval_metric (str, list of str, optional) – Deprecated since version 1.6.0: use
eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (int | bool) – If verbose is True and an evaluation set is used, the evaluation
metric measured on the validation set is printed to stdout at each boosting stage. If verbose
is an integer, the evaluation metric is printed at each verbose boosting stage. The last
boosting stage / the boosting stage found by using early_stopping_rounds is also printed.

• xgb_model (Booster | XGBModel | None) – file name of stored XGBoost model or
‘Booster’ instance XGBoost model to be loaded before training (allows training continua-
tion).

• sample_weight_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series]
| None) – A list of the form [L_1, L_2, . . . , L_n], where each L_i is a list of group weights
on the i-th validation set.

Note: Weights are per-group for ranking tasks

In ranking task, one weight is assigned to each query group (not each data point). This
is because we only care about the relative ordering of data points within each group, so it
doesn’t make sense to assign weights to individual data points.

• base_margin_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series] |
None) – A list of the form [M_1, M_2, . . . , M_n], where each M_i is an array like object
storing base margin for the i-th validation set.

• feature_weights (da.Array | dd.DataFrame | dd.Series | None) – Weight
for each feature, defines the probability of each feature being selected when colsample
is being used. All values must be greater than 0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
DaskXGBRanker

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int
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get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.
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Note: This function is only thread safe for gbtree and dart.

Parameters

• X (da.Array | dd.DataFrame) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – Margin added
to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.dask.DaskXGBRFRegressor(*, learning_rate=1, subsample=0.8, colsample_bynode=0.8,
reg_lambda=1e-05, **kwargs)
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Bases: DaskXGBRegressor

Implementation of the Scikit-Learn API for XGBoost Random Forest Regressor.

New in version 1.4.0.

Parameters

• n_estimators (int) – Number of trees in random forest to fit.

• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.
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• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.

• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental
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A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.

Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.
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Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .

Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case, it
should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples]
The target values

y_pred: array_like of shape [n_samples]
The predicted values

grad: array_like of shape [n_samples]
The value of the gradient for each sample point.

hess: array_like of shape [n_samples]
The value of the second derivative for each sample point

apply(X, ntree_limit=None, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

1.10. XGBoost Python Package 223

https://docs.python.org/3.8/library/stdtypes.html#dict
https://docs.python.org/3.8/library/typing.html#typing.Tuple
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int


xgboost, Release 1.7.6

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]

property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property client: distributed.Client

The dask client used in this model. The Client object can not be serialized for transmission, so if task is
launched from a worker instead of directly from the client process, this attribute needs to be set at that
worker.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns
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• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.

fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting model.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (da.Array | dd.DataFrame) – Feature matrix

• y (da.Array | dd.DataFrame | dd.Series) – Labels

• sample_weight (da.Array | dd.DataFrame | dd.Series | None) – instance
weights

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – global bias for
each instance.

• eval_set (Sequence[Tuple[da.Array | dd.DataFrame | dd.Series, da.
Array | dd.DataFrame | dd.Series]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us
track the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (int | bool) – If verbose is True and an evaluation set is used, the evaluation
metric measured on the validation set is printed to stdout at each boosting stage. If verbose
is an integer, the evaluation metric is printed at each verbose boosting stage. The last
boosting stage / the boosting stage found by using early_stopping_rounds is also printed.

• xgb_model (Booster | XGBModel | None) – file name of stored XGBoost model or
‘Booster’ instance XGBoost model to be loaded before training (allows training continua-
tion).

• sample_weight_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series]
| None) – A list of the form [L_1, L_2, . . . , L_n], where each L_i is an array like object
storing instance weights for the i-th validation set.

• base_margin_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series] |
None) – A list of the form [M_1, M_2, . . . , M_n], where each M_i is an array like object
storing base margin for the i-th validation set.

• feature_weights (da.Array | dd.DataFrame | dd.Series | None) – Weight
for each feature, defines the probability of each feature being selected when colsample
is being used. All values must be greater than 0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.
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Return type
DaskXGBRFRegressor

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")
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Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None

property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (da.Array | dd.DataFrame) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – Margin added
to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name
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Return type
None

score(X, y, sample_weight=None)
Return the coefficient of determination of the prediction.

The coefficient of determination 𝑅2 is defined as (1− 𝑢
𝑣 ), where 𝑢 is the residual sum of squares ((y_true

- y_pred)** 2).sum() and 𝑣 is the total sum of squares ((y_true - y_true.mean()) ** 2).
sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse).
A constant model that always predicts the expected value of y, disregarding the input features, would get a
𝑅2 score of 0.0.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples. For some es-
timators this may be a precomputed kernel matrix or a list of generic objects instead with
shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of
samples used in the fitting for the estimator.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
values for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – 𝑅2 of self.predict(X) w.r.t. y.

Return type
float

Notes

The 𝑅2 score used when calling score on a regressor uses multioutput='uniform_average' from
version 0.23 to keep consistent with default value of r2_score(). This influences the score method of
all the multioutput regressors (except for MultiOutputRegressor).

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –

class xgboost.dask.DaskXGBRFClassifier(*, learning_rate=1, subsample=0.8, colsample_bynode=0.8,
reg_lambda=1e-05, **kwargs)

Bases: DaskXGBClassifier

Implementation of the Scikit-Learn API for XGBoost Random Forest Classifier.

New in version 1.4.0.

Parameters

• n_estimators (int) – Number of trees in random forest to fit.
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• max_depth (Optional[int]) – Maximum tree depth for base learners.

• max_leaves – Maximum number of leaves; 0 indicates no limit.

• max_bin – If using histogram-based algorithm, maximum number of bins per feature

• grow_policy – Tree growing policy. 0: favor splitting at nodes closest to the node, i.e.
grow depth-wise. 1: favor splitting at nodes with highest loss change.

• learning_rate (Optional[float]) – Boosting learning rate (xgb’s “eta”)

• verbosity (Optional[int]) – The degree of verbosity. Valid values are 0 (silent) - 3
(debug).

• objective (Union[str, Callable[[numpy.ndarray, numpy.ndarray],
Tuple[numpy.ndarray, numpy.ndarray]], NoneType]) – Specify the learning
task and the corresponding learning objective or a custom objective function to be used (see
note below).

• booster (Optional[str]) – Specify which booster to use: gbtree, gblinear or dart.

• tree_method (Optional[str]) – Specify which tree method to use. Default to auto. If
this parameter is set to default, XGBoost will choose the most conservative option available.
It’s recommended to study this option from the parameters document tree method

• n_jobs (Optional[int]) – Number of parallel threads used to run xgboost. When used
with other Scikit-Learn algorithms like grid search, you may choose which algorithm to
parallelize and balance the threads. Creating thread contention will significantly slow down
both algorithms.

• gamma (Optional[float]) – (min_split_loss) Minimum loss reduction required to make
a further partition on a leaf node of the tree.

• min_child_weight (Optional[float]) – Minimum sum of instance weight(hessian)
needed in a child.

• max_delta_step (Optional[float]) – Maximum delta step we allow each tree’s weight
estimation to be.

• subsample (Optional[float]) – Subsample ratio of the training instance.

• sampling_method –

Sampling method. Used only by gpu_hist tree method.

– uniform: select random training instances uniformly.

– gradient_based select random training instances with higher probability when the gra-
dient and hessian are larger. (cf. CatBoost)

• colsample_bytree (Optional[float]) – Subsample ratio of columns when constructing
each tree.

• colsample_bylevel (Optional[float]) – Subsample ratio of columns for each level.

• colsample_bynode (Optional[float]) – Subsample ratio of columns for each split.

• reg_alpha (Optional[float]) – L1 regularization term on weights (xgb’s alpha).

• reg_lambda (Optional[float]) – L2 regularization term on weights (xgb’s lambda).

• scale_pos_weight (Optional[float]) – Balancing of positive and negative weights.

• base_score (Optional[float]) – The initial prediction score of all instances, global bias.
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• random_state (Optional[Union[numpy.random.RandomState, int]]) – Random
number seed.

Note: Using gblinear booster with shotgun updater is nondeterministic as it uses Hogwild
algorithm.

• missing (float, default np.nan) – Value in the data which needs to be present as a
missing value.

• num_parallel_tree (Optional[int]) – Used for boosting random forest.

• monotone_constraints (Optional[Union[Dict[str, int], str]]) – Constraint
of variable monotonicity. See tutorial for more information.

• interaction_constraints (Optional[Union[str, List[Tuple[str]]]]) – Con-
straints for interaction representing permitted interactions. The constraints must be specified
in the form of a nested list, e.g. [[0, 1], [2, 3, 4]], where each inner list is a group of
indices of features that are allowed to interact with each other. See tutorial for more infor-
mation

• importance_type (Optional[str]) – The feature importance type for the fea-
ture_importances_ property:

– For tree model, it’s either “gain”, “weight”, “cover”, “total_gain” or “total_cover”.

– For linear model, only “weight” is defined and it’s the normalized coefficients without
bias.

• gpu_id (Optional[int]) – Device ordinal.

• validate_parameters (Optional[bool]) – Give warnings for unknown parameter.

• predictor (Optional[str]) – Force XGBoost to use specific predictor, available choices
are [cpu_predictor, gpu_predictor].

• enable_categorical (bool) – New in version 1.5.0.

Note: This parameter is experimental

Experimental support for categorical data. When enabled, cudf/pandas.DataFrame should be
used to specify categorical data type. Also, JSON/UBJSON serialization format is required.

• feature_types (FeatureTypes) – New in version 1.7.0.

Used for specifying feature types without constructing a dataframe. See DMatrix for details.

• max_cat_to_onehot (Optional[int]) – New in version 1.6.0.

Note: This parameter is experimental

A threshold for deciding whether XGBoost should use one-hot encoding based split for cat-
egorical data. When number of categories is lesser than the threshold then one-hot encod-
ing is chosen, otherwise the categories will be partitioned into children nodes. Also, en-
able_categorical needs to be set to have categorical feature support. See Categorical Data
and Parameters for Categorical Feature for details.

• max_cat_threshold (Optional[int]) – New in version 1.7.0.
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Note: This parameter is experimental

Maximum number of categories considered for each split. Used only by partition-based
splits for preventing over-fitting. Also, enable_categorical needs to be set to have categorical
feature support. See Categorical Data and Parameters for Categorical Feature for details.

• eval_metric (Optional[Union[str, List[str], Callable]]) – New in version
1.6.0.

Metric used for monitoring the training result and early stopping. It can be a string or list of
strings as names of predefined metric in XGBoost (See doc/parameter.rst), one of the metrics
in sklearn.metrics, or any other user defined metric that looks like sklearn.metrics.

If custom objective is also provided, then custom metric should implement the corresponding
reverse link function.

Unlike the scoring parameter commonly used in scikit-learn, when a callable object is pro-
vided, it’s assumed to be a cost function and by default XGBoost will minimize the result
during early stopping.

For advanced usage on Early stopping like directly choosing to maximize instead of mini-
mize, see xgboost.callback.EarlyStopping.

See Custom Objective and Evaluation Metric for more.

Note: This parameter replaces eval_metric in fit() method. The old one receives un-
transformed prediction regardless of whether custom objective is being used.

from sklearn.datasets import load_diabetes
from sklearn.metrics import mean_absolute_error
X, y = load_diabetes(return_X_y=True)
reg = xgb.XGBRegressor(

tree_method="hist",
eval_metric=mean_absolute_error,

)
reg.fit(X, y, eval_set=[(X, y)])

• early_stopping_rounds (Optional[int]) – New in version 1.6.0.

Activates early stopping. Validation metric needs to improve at least once in every
early_stopping_rounds round(s) to continue training. Requires at least one item in eval_set
in fit().

The method returns the model from the last iteration (not the best one). If there’s more than
one item in eval_set, the last entry will be used for early stopping. If there’s more than one
metric in eval_metric, the last metric will be used for early stopping.

If early stopping occurs, the model will have three additional fields: best_score,
best_iteration and best_ntree_limit.

Note: This parameter replaces early_stopping_rounds in fit() method.

• callbacks (Optional[List[TrainingCallback]]) – List of callback functions that are
applied at end of each iteration. It is possible to use predefined callbacks by using Callback
API .
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Note: States in callback are not preserved during training, which means callback objects
can not be reused for multiple training sessions without reinitialization or deepcopy.

for params in parameters_grid:
# be sure to (re)initialize the callbacks before each run
callbacks = [xgb.callback.LearningRateScheduler(custom_rates)]
xgboost.train(params, Xy, callbacks=callbacks)

• kwargs (dict, optional) – Keyword arguments for XGBoost Booster object. Full docu-
mentation of parameters can be found here. Attempting to set a parameter via the constructor
args and **kwargs dict simultaneously will result in a TypeError.

Note: **kwargs unsupported by scikit-learn

**kwargs is unsupported by scikit-learn. We do not guarantee that parameters passed via
this argument will interact properly with scikit-learn.

Note: Custom objective function

A custom objective function can be provided for the objective parameter. In this case, it
should have the signature objective(y_true, y_pred) -> grad, hess:

y_true: array_like of shape [n_samples]
The target values

y_pred: array_like of shape [n_samples]
The predicted values

grad: array_like of shape [n_samples]
The value of the gradient for each sample point.

hess: array_like of shape [n_samples]
The value of the second derivative for each sample point

apply(X, ntree_limit=None, iteration_range=None)
Return the predicted leaf every tree for each sample. If the model is trained with early stopping, then
best_iteration is used automatically.

Parameters

• X (array_like, shape=[n_samples, n_features]) – Input features matrix.

• iteration_range (Tuple[int, int] | None) – See predict().

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

Returns
X_leaves – For each datapoint x in X and for each tree, return the index of the leaf x ends up
in. Leaves are numbered within [0; 2**(self.max_depth+1)), possibly with gaps in the
numbering.

Return type
array_like, shape=[n_samples, n_trees]
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property best_iteration: int

The best iteration obtained by early stopping. This attribute is 0-based, for instance if the best iteration is
the first round, then best_iteration is 0.

property best_score: float

The best score obtained by early stopping.

property client: distributed.Client

The dask client used in this model. The Client object can not be serialized for transmission, so if task is
launched from a worker instead of directly from the client process, this attribute needs to be set at that
worker.

property coef_: ndarray

Coefficients property

Note: Coefficients are defined only for linear learners

Coefficients are only defined when the linear model is chosen as base learner (booster=gblinear). It is not
defined for other base learner types, such as tree learners (booster=gbtree).

Returns
coef_

Return type
array of shape [n_features] or [n_classes, n_features]

evals_result()

Return the evaluation results.

If eval_set is passed to the fit() function, you can call evals_result() to get evaluation results for all
passed eval_sets. When eval_metric is also passed to the fit() function, the evals_result will contain
the eval_metrics passed to the fit() function.

The returned evaluation result is a dictionary:

{'validation_0': {'logloss': ['0.604835', '0.531479']},
'validation_1': {'logloss': ['0.41965', '0.17686']}}

Return type
evals_result

property feature_importances_: ndarray

Feature importances property, return depends on importance_type parameter. When model trained with
multi-class/multi-label/multi-target dataset, the feature importance is “averaged” over all targets. The “av-
erage” is defined based on the importance type. For instance, if the importance type is “total_gain”, then
the score is sum of loss change for each split from all trees.

Returns

• feature_importances_ (array of shape [n_features] except for multi-class)

• linear model, which returns an array with shape (n_features, n_classes)

property feature_names_in_: ndarray

Names of features seen during fit(). Defined only when X has feature names that are all strings.
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fit(X, y, *, sample_weight=None, base_margin=None, eval_set=None, eval_metric=None,
early_stopping_rounds=None, verbose=True, xgb_model=None, sample_weight_eval_set=None,
base_margin_eval_set=None, feature_weights=None, callbacks=None)
Fit gradient boosting model.

Note that calling fit() multiple times will cause the model object to be re-fit from scratch. To resume
training from a previous checkpoint, explicitly pass xgb_model argument.

Parameters

• X (da.Array | dd.DataFrame) – Feature matrix

• y (da.Array | dd.DataFrame | dd.Series) – Labels

• sample_weight (da.Array | dd.DataFrame | dd.Series | None) – instance
weights

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – global bias for
each instance.

• eval_set (Sequence[Tuple[da.Array | dd.DataFrame | dd.Series, da.
Array | dd.DataFrame | dd.Series]] | None) – A list of (X, y) tuple pairs to use
as validation sets, for which metrics will be computed. Validation metrics will help us
track the performance of the model.

• eval_metric (str, list of str, or callable, optional) – Deprecated since
version 1.6.0: Use eval_metric in __init__() or set_params() instead.

• early_stopping_rounds (int) – Deprecated since version 1.6.0: Use
early_stopping_rounds in __init__() or set_params() instead.

• verbose (int | bool) – If verbose is True and an evaluation set is used, the evaluation
metric measured on the validation set is printed to stdout at each boosting stage. If verbose
is an integer, the evaluation metric is printed at each verbose boosting stage. The last
boosting stage / the boosting stage found by using early_stopping_rounds is also printed.

• xgb_model (Booster | XGBModel | None) – file name of stored XGBoost model or
‘Booster’ instance XGBoost model to be loaded before training (allows training continua-
tion).

• sample_weight_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series]
| None) – A list of the form [L_1, L_2, . . . , L_n], where each L_i is an array like object
storing instance weights for the i-th validation set.

• base_margin_eval_set (Sequence[da.Array | dd.DataFrame | dd.Series] |
None) – A list of the form [M_1, M_2, . . . , M_n], where each M_i is an array like object
storing base margin for the i-th validation set.

• feature_weights (da.Array | dd.DataFrame | dd.Series | None) – Weight
for each feature, defines the probability of each feature being selected when colsample
is being used. All values must be greater than 0, otherwise a ValueError is thrown.

• callbacks (Sequence[TrainingCallback] | None) – Deprecated since version
1.6.0: Use callbacks in __init__() or set_params() instead.

Return type
DaskXGBRFClassifier

get_booster()

Get the underlying xgboost Booster of this model.

This will raise an exception when fit was not called

234 Chapter 1. Contents

https://docs.python.org/3.8/library/typing.html#typing.Sequence
https://docs.python.org/3.8/library/typing.html#typing.Tuple
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#list
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#int
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/typing.html#typing.Sequence
https://docs.python.org/3.8/library/typing.html#typing.Sequence
https://docs.python.org/3.8/library/typing.html#typing.Sequence


xgboost, Release 1.7.6

Returns
booster

Return type
a xgboost booster of underlying model

get_num_boosting_rounds()

Gets the number of xgboost boosting rounds.

Return type
int

get_params(deep=True)
Get parameters.

Parameters
deep (bool) –

Return type
Dict[str, Any]

get_xgb_params()

Get xgboost specific parameters.

Return type
Dict[str, Any]

property intercept_: ndarray

Intercept (bias) property

Note: Intercept is defined only for linear learners

Intercept (bias) is only defined when the linear model is chosen as base learner (booster=gblinear). It is
not defined for other base learner types, such as tree learners (booster=gbtree).

Returns
intercept_

Return type
array of shape (1,) or [n_classes]

load_model(fname)
Load the model from a file or bytearray. Path to file can be local or as an URI.

The model is loaded from XGBoost format which is universal among the various XGBoost interfaces.
Auxiliary attributes of the Python Booster object (such as feature_names) will not be loaded when using
binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.load_model("model.json")
# or
model.load_model("model.ubj")

Parameters
fname (str | bytearray | PathLike) – Input file name or memory buffer(see also
save_raw)

Return type
None
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property n_features_in_: int

Number of features seen during fit().

predict(X, output_margin=False, ntree_limit=None, validate_features=True, base_margin=None,
iteration_range=None)

Predict with X. If the model is trained with early stopping, then best_iteration is used automatically. For
tree models, when data is on GPU, like cupy array or cuDF dataframe and predictor is not specified, the
prediction is run on GPU automatically, otherwise it will run on CPU.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (da.Array | dd.DataFrame) – Data to predict with.

• output_margin (bool) – Whether to output the raw untransformed margin value.

• ntree_limit (int | None) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (da.Array | dd.DataFrame | dd.Series | None) – Margin added
to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open
set) rounds are used in this prediction.

New in version 1.4.0.

Return type
prediction

predict_proba(X, ntree_limit=None, validate_features=True, base_margin=None, iteration_range=None)
Predict the probability of each X example being of a given class.

Note: This function is only thread safe for gbtree and dart.

Parameters

• X (array_like) – Feature matrix.

• ntree_limit (int) – Deprecated, use iteration_range instead.

• validate_features (bool) – When this is True, validate that the Booster’s and data’s
feature_names are identical. Otherwise, it is assumed that the feature_names are the same.

• base_margin (array_like) – Margin added to prediction.

• iteration_range (Tuple[int, int] | None) – Specifies which layer of trees are
used in prediction. For example, if a random forest is trained with 100 rounds. Speci-
fying iteration_range=(10, 20), then only the forests built during [10, 20) (half open set)
rounds are used in this prediction.
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Returns
a numpy array of shape array-like of shape (n_samples, n_classes) with the probability of
each data example being of a given class.

Return type
prediction

save_model(fname)
Save the model to a file.

The model is saved in an XGBoost internal format which is universal among the various XGBoost inter-
faces. Auxiliary attributes of the Python Booster object (such as feature_names) will not be saved when
using binary format. To save those attributes, use JSON/UBJ instead. See Model IO for more info.

model.save_model("model.json")
# or
model.save_model("model.ubj")

Parameters
fname (string or os.PathLike) – Output file name

Return type
None

score(X, y, sample_weight=None)
Return the mean accuracy on the given test data and labels.

In multi-label classification, this is the subset accuracy which is a harsh metric since you require for each
sample that each label set be correctly predicted.

Parameters

• X (array-like of shape (n_samples, n_features)) – Test samples.

• y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True
labels for X.

• sample_weight (array-like of shape (n_samples,), default=None) – Sam-
ple weights.

Returns
score – Mean accuracy of self.predict(X) w.r.t. y.

Return type
float

set_params(**params)
Set the parameters of this estimator. Modification of the sklearn method to allow unknown kwargs. This
allows using the full range of xgboost parameters that are not defined as member variables in sklearn grid
search.

Return type
self

Parameters
params (Any) –
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PySpark API

PySpark XGBoost integration interface

class xgboost.spark.SparkXGBClassifier(**kwargs)
Bases: _SparkXGBEstimator, HasProbabilityCol, HasRawPredictionCol

SparkXGBClassifier is a PySpark ML estimator. It implements the XGBoost classification algorithm based
on XGBoost python library, and it can be used in PySpark Pipeline and PySpark ML meta algorithms like
CrossValidator/ TrainValidationSplit/ OneVsRest

SparkXGBClassifier automatically supports most of the parameters in xgboost.XGBClassifier constructor and
most of the parameters used in xgboost.XGBClassifier fit and predict method.

SparkXGBClassifier doesn’t support setting gpu_id but support another param use_gpu, see doc below for more
details.

SparkXGBClassifier doesn’t support setting base_margin explicitly as well, but support another param called
base_margin_col. see doc below for more details.

SparkXGBClassifier doesn’t support setting output_margin, but we can get output margin from the raw prediction
column. See raw_prediction_col param doc below for more details.

SparkXGBClassifier doesn’t support validate_features and output_margin param.

SparkXGBClassifier doesn’t support setting nthread xgboost param, instead, the nthread param for each xgboost
worker will be set equal to spark.task.cpus config value.

Parameters

• callbacks – The export and import of the callback functions are at best effort. For details,
see xgboost.spark.SparkXGBClassifier.callbacks param doc.

• raw_prediction_col – The output_margin=True is implicitly supported by the rawPre-
dictionCol output column, which is always returned with the predicted margin values.

• validation_indicator_col – For params related to xgboost.XGBClassifier train-
ing with evaluation dataset’s supervision, set xgboost.spark.SparkXGBClassifier.
validation_indicator_col parameter instead of setting the eval_set parameter in xg-
boost.XGBClassifier fit method.

• weight_col – To specify the weight of the training and validation dataset, set xgboost.
spark.SparkXGBClassifier.weight_col parameter instead of setting sample_weight
and sample_weight_eval_set parameter in xgboost.XGBClassifier fit method.

• xgb_model – Set the value to be the instance returned by xgboost.spark.
SparkXGBClassifierModel.get_booster().

• num_workers – Integer that specifies the number of XGBoost workers to use. Each XGBoost
worker corresponds to one spark task.

• use_gpu – Boolean that specifies whether the executors are running on GPU instances.

• base_margin_col – To specify the base margins of the training and validation dataset, set
xgboost.spark.SparkXGBClassifier.base_margin_col parameter instead of setting
base_margin and base_margin_eval_set in the xgboost.XGBClassifier fit method. Note: this
isn’t available for distributed training.

• Note: (..) – The Parameters chart above contains parameters that need special handling.:
For a full list of parameters, see entries with Param(parent=. . . below.

• Note: – This API is experimental.:
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Examples

>>> from xgboost.spark import SparkXGBClassifier
>>> from pyspark.ml.linalg import Vectors
>>> df_train = spark.createDataFrame([
... (Vectors.dense(1.0, 2.0, 3.0), 0, False, 1.0),
... (Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, False, 2.0),
... (Vectors.dense(4.0, 5.0, 6.0), 0, True, 1.0),
... (Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, True, 2.0),
... ], ["features", "label", "isVal", "weight"])
>>> df_test = spark.createDataFrame([
... (Vectors.dense(1.0, 2.0, 3.0), ),
... ], ["features"])
>>> xgb_classifier = SparkXGBClassifier(max_depth=5, missing=0.0,
... validation_indicator_col='isVal', weight_col='weight',
... early_stopping_rounds=1, eval_metric='logloss')
>>> xgb_clf_model = xgb_classifier.fit(df_train)
>>> xgb_clf_model.transform(df_test).show()

clear(param)

Clears a param from the param map if it has been explicitly set.

Parameters
param (Param) –

Return type
None

copy(extra=None)
Creates a copy of this instance with the same uid and some extra params. The default implementation
creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and
returns the copy. Subclasses should override this method if the default approach is not sufficient.

Parameters

• extra (dict, optional) – Extra parameters to copy to the new instance

• self (P) –

Returns
Copy of this instance

Return type
Params

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a
string.

Parameters
param (str | Param) –

Return type
str

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.
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Return type
str

extractParamMap(extra=None)
Extracts the embedded default param values and user-supplied values, and then merges them with extra
values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with
ordering: default param values < user-supplied values < extra.

Parameters
extra (dict, optional) – extra param values

Returns
merged param map

Return type
dict

fit(dataset, params=None)
Fits a model to the input dataset with optional parameters.

New in version 1.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset.

• params (dict or list or tuple, optional) – an optional param map that overrides
embedded params. If a list/tuple of param maps is given, this calls fit on each param map
and returns a list of models.

Returns
fitted model(s)

Return type
Transformer or a list of Transformer

fitMultiple(dataset, paramMaps)
Fits a model to the input dataset for each param map in paramMaps.

New in version 2.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset.

• paramMaps (collections.abc.Sequence) – A Sequence of param maps.

Returns
A thread safe iterable which contains one model for each param map. Each call to
next(modelIterator) will return (index, model) where model was fit using paramMaps[index].
index values may not be sequential.

Return type
_FitMultipleIterator

getFeaturesCol()

Gets the value of featuresCol or its default value.

Return type
str
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getLabelCol()

Gets the value of labelCol or its default value.

Return type
str

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is
set.

Parameters
param (str | Param[T]) –

Return type
Any | T

getParam(paramName)
Gets a param by its name.

Parameters
paramName (str) –

Return type
Param

getPredictionCol()

Gets the value of predictionCol or its default value.

Return type
str

getProbabilityCol()

Gets the value of probabilityCol or its default value.

Return type
str

getRawPredictionCol()

Gets the value of rawPredictionCol or its default value.

Return type
str

getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

Return type
str

getWeightCol()

Gets the value of weightCol or its default value.

Return type
str

hasDefault(param)

Checks whether a param has a default value.

Parameters
param (str | Param[Any]) –

1.10. XGBoost Python Package 241

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/typing.html#typing.Any
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/typing.html#typing.Any


xgboost, Release 1.7.6

Return type
bool

hasParam(paramName)
Tests whether this instance contains a param with a given (string) name.

Parameters
paramName (str) –

Return type
bool

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

isSet(param)

Checks whether a param is explicitly set by user.

Parameters
param (str | Param[Any]) –

Return type
bool

classmethod load(path)
Reads an ML instance from the input path, a shortcut of read().load(path).

Parameters
path (str) –

Return type
RL

property params: List[Param]

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type
Param.

classmethod read()

Return the reader for loading the estimator.

save(path)
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

Parameters
path (str) –

Return type
None

set(param, value)
Sets a parameter in the embedded param map.

Parameters

• param (Param) –

• value (Any) –
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Return type
None

setParams(**kwargs)
Set params for the estimator.

uid

A unique id for the object.

write()

Return the writer for saving the estimator.

class xgboost.spark.SparkXGBClassifierModel(xgb_sklearn_model=None)
Bases: _SparkXGBModel, HasProbabilityCol, HasRawPredictionCol

The model returned by xgboost.spark.SparkXGBClassifier.fit()

Note: This API is experimental.

clear(param)

Clears a param from the param map if it has been explicitly set.

Parameters
param (Param) –

Return type
None

copy(extra=None)
Creates a copy of this instance with the same uid and some extra params. The default implementation
creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and
returns the copy. Subclasses should override this method if the default approach is not sufficient.

Parameters

• extra (dict, optional) – Extra parameters to copy to the new instance

• self (P) –

Returns
Copy of this instance

Return type
Params

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a
string.

Parameters
param (str | Param) –

Return type
str

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

Return type
str
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extractParamMap(extra=None)
Extracts the embedded default param values and user-supplied values, and then merges them with extra
values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with
ordering: default param values < user-supplied values < extra.

Parameters
extra (dict, optional) – extra param values

Returns
merged param map

Return type
dict

getFeaturesCol()

Gets the value of featuresCol or its default value.

Return type
str

getLabelCol()

Gets the value of labelCol or its default value.

Return type
str

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is
set.

Parameters
param (str | Param[T]) –

Return type
Any | T

getParam(paramName)
Gets a param by its name.

Parameters
paramName (str) –

Return type
Param

getPredictionCol()

Gets the value of predictionCol or its default value.

Return type
str

getProbabilityCol()

Gets the value of probabilityCol or its default value.

Return type
str

getRawPredictionCol()

Gets the value of rawPredictionCol or its default value.

Return type
str
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getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

Return type
str

getWeightCol()

Gets the value of weightCol or its default value.

Return type
str

get_booster()

Return the xgboost.core.Booster instance.

get_feature_importances(importance_type='weight')
Get feature importance of each feature. Importance type can be defined as:

• ‘weight’: the number of times a feature is used to split the data across all trees.

• ‘gain’: the average gain across all splits the feature is used in.

• ‘cover’: the average coverage across all splits the feature is used in.

• ‘total_gain’: the total gain across all splits the feature is used in.

• ‘total_cover’: the total coverage across all splits the feature is used in.

Parameters
importance_type (str, default 'weight') – One of the importance types defined
above.

hasDefault(param)

Checks whether a param has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

hasParam(paramName)
Tests whether this instance contains a param with a given (string) name.

Parameters
paramName (str) –

Return type
bool

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool
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isSet(param)

Checks whether a param is explicitly set by user.

Parameters
param (str | Param[Any]) –

Return type
bool

classmethod load(path)
Reads an ML instance from the input path, a shortcut of read().load(path).

Parameters
path (str) –

Return type
RL

property params: List[Param]

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type
Param.

classmethod read()

Return the reader for loading the model.

save(path)
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

Parameters
path (str) –

Return type
None

set(param, value)
Sets a parameter in the embedded param map.

Parameters

• param (Param) –

• value (Any) –

Return type
None

transform(dataset, params=None)
Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset

• params (dict, optional) – an optional param map that overrides embedded params.

Returns
transformed dataset

Return type
pyspark.sql.DataFrame
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uid

A unique id for the object.

write()

Return the writer for saving the model.

class xgboost.spark.SparkXGBRegressor(**kwargs)
Bases: _SparkXGBEstimator

SparkXGBRegressor is a PySpark ML estimator. It implements the XGBoost regression algorithm based
on XGBoost python library, and it can be used in PySpark Pipeline and PySpark ML meta algorithms like
CrossValidator/ TrainValidationSplit/ OneVsRest

SparkXGBRegressor automatically supports most of the parameters in xgboost.XGBRegressor constructor and
most of the parameters used in xgboost.XGBRegressor fit and predict method.

SparkXGBRegressor doesn’t support setting gpu_id but support another param use_gpu, see doc below for more
details.

SparkXGBRegressor doesn’t support setting base_margin explicitly as well, but support another param called
base_margin_col. see doc below for more details.

SparkXGBRegressor doesn’t support validate_features and output_margin param.

SparkXGBRegressor doesn’t support setting nthread xgboost param, instead, the nthread param for each xgboost
worker will be set equal to spark.task.cpus config value.

callbacks:
The export and import of the callback functions are at best effort. For details, see xgboost.spark.
SparkXGBRegressor.callbacks param doc.

validation_indicator_col
For params related to xgboost.XGBRegressor training with evaluation dataset’s supervision, set xgboost.
spark.SparkXGBRegressor.validation_indicator_col parameter instead of setting the eval_set
parameter in xgboost.XGBRegressor fit method.

weight_col:
To specify the weight of the training and validation dataset, set xgboost.spark.SparkXGBRegressor.
weight_col parameter instead of setting sample_weight and sample_weight_eval_set parameter in xg-
boost.XGBRegressor fit method.

xgb_model:
Set the value to be the instance returned by xgboost.spark.SparkXGBRegressorModel.
get_booster().

num_workers:
Integer that specifies the number of XGBoost workers to use. Each XGBoost worker corresponds to one
spark task.

use_gpu:
Boolean that specifies whether the executors are running on GPU instances.

base_margin_col:
To specify the base margins of the training and validation dataset, set xgboost.spark.
SparkXGBRegressor.base_margin_col parameter instead of setting base_margin and
base_margin_eval_set in the xgboost.XGBRegressor fit method. Note: this isn’t available for dis-
tributed training.
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Note: The Parameters chart above contains parameters that need special handling. For a full list of parameters,
see entries with Param(parent=. . . below.

Note: This API is experimental.

Examples

>>> from xgboost.spark import SparkXGBRegressor
>>> from pyspark.ml.linalg import Vectors
>>> df_train = spark.createDataFrame([
... (Vectors.dense(1.0, 2.0, 3.0), 0, False, 1.0),
... (Vectors.sparse(3, {1: 1.0, 2: 5.5}), 1, False, 2.0),
... (Vectors.dense(4.0, 5.0, 6.0), 2, True, 1.0),
... (Vectors.sparse(3, {1: 6.0, 2: 7.5}), 3, True, 2.0),
... ], ["features", "label", "isVal", "weight"])
>>> df_test = spark.createDataFrame([
... (Vectors.dense(1.0, 2.0, 3.0), ),
... (Vectors.sparse(3, {1: 1.0, 2: 5.5}), )
... ], ["features"])
>>> xgb_regressor = SparkXGBRegressor(max_depth=5, missing=0.0,
... validation_indicator_col='isVal', weight_col='weight',
... early_stopping_rounds=1, eval_metric='rmse')
>>> xgb_reg_model = xgb_regressor.fit(df_train)
>>> xgb_reg_model.transform(df_test)

clear(param)

Clears a param from the param map if it has been explicitly set.

Parameters
param (Param) –

Return type
None

copy(extra=None)
Creates a copy of this instance with the same uid and some extra params. The default implementation
creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and
returns the copy. Subclasses should override this method if the default approach is not sufficient.

Parameters

• extra (dict, optional) – Extra parameters to copy to the new instance

• self (P) –

Returns
Copy of this instance

Return type
Params
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explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a
string.

Parameters
param (str | Param) –

Return type
str

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

Return type
str

extractParamMap(extra=None)
Extracts the embedded default param values and user-supplied values, and then merges them with extra
values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with
ordering: default param values < user-supplied values < extra.

Parameters
extra (dict, optional) – extra param values

Returns
merged param map

Return type
dict

fit(dataset, params=None)
Fits a model to the input dataset with optional parameters.

New in version 1.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset.

• params (dict or list or tuple, optional) – an optional param map that overrides
embedded params. If a list/tuple of param maps is given, this calls fit on each param map
and returns a list of models.

Returns
fitted model(s)

Return type
Transformer or a list of Transformer

fitMultiple(dataset, paramMaps)
Fits a model to the input dataset for each param map in paramMaps.

New in version 2.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset.

• paramMaps (collections.abc.Sequence) – A Sequence of param maps.

Returns
A thread safe iterable which contains one model for each param map. Each call to
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next(modelIterator) will return (index, model) where model was fit using paramMaps[index].
index values may not be sequential.

Return type
_FitMultipleIterator

getFeaturesCol()

Gets the value of featuresCol or its default value.

Return type
str

getLabelCol()

Gets the value of labelCol or its default value.

Return type
str

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is
set.

Parameters
param (str | Param[T]) –

Return type
Any | T

getParam(paramName)
Gets a param by its name.

Parameters
paramName (str) –

Return type
Param

getPredictionCol()

Gets the value of predictionCol or its default value.

Return type
str

getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

Return type
str

getWeightCol()

Gets the value of weightCol or its default value.

Return type
str

hasDefault(param)

Checks whether a param has a default value.

Parameters
param (str | Param[Any]) –
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Return type
bool

hasParam(paramName)
Tests whether this instance contains a param with a given (string) name.

Parameters
paramName (str) –

Return type
bool

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

isSet(param)

Checks whether a param is explicitly set by user.

Parameters
param (str | Param[Any]) –

Return type
bool

classmethod load(path)
Reads an ML instance from the input path, a shortcut of read().load(path).

Parameters
path (str) –

Return type
RL

property params: List[Param]

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type
Param.

classmethod read()

Return the reader for loading the estimator.

save(path)
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

Parameters
path (str) –

Return type
None

set(param, value)
Sets a parameter in the embedded param map.

Parameters

• param (Param) –

• value (Any) –
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Return type
None

setParams(**kwargs)
Set params for the estimator.

uid

A unique id for the object.

write()

Return the writer for saving the estimator.

class xgboost.spark.SparkXGBRegressorModel(xgb_sklearn_model=None)
Bases: _SparkXGBModel

The model returned by xgboost.spark.SparkXGBRegressor.fit()

Note: This API is experimental.

clear(param)

Clears a param from the param map if it has been explicitly set.

Parameters
param (Param) –

Return type
None

copy(extra=None)
Creates a copy of this instance with the same uid and some extra params. The default implementation
creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and
returns the copy. Subclasses should override this method if the default approach is not sufficient.

Parameters

• extra (dict, optional) – Extra parameters to copy to the new instance

• self (P) –

Returns
Copy of this instance

Return type
Params

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a
string.

Parameters
param (str | Param) –

Return type
str

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

Return type
str
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extractParamMap(extra=None)
Extracts the embedded default param values and user-supplied values, and then merges them with extra
values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with
ordering: default param values < user-supplied values < extra.

Parameters
extra (dict, optional) – extra param values

Returns
merged param map

Return type
dict

getFeaturesCol()

Gets the value of featuresCol or its default value.

Return type
str

getLabelCol()

Gets the value of labelCol or its default value.

Return type
str

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is
set.

Parameters
param (str | Param[T]) –

Return type
Any | T

getParam(paramName)
Gets a param by its name.

Parameters
paramName (str) –

Return type
Param

getPredictionCol()

Gets the value of predictionCol or its default value.

Return type
str

getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

Return type
str

getWeightCol()

Gets the value of weightCol or its default value.

Return type
str
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get_booster()

Return the xgboost.core.Booster instance.

get_feature_importances(importance_type='weight')
Get feature importance of each feature. Importance type can be defined as:

• ‘weight’: the number of times a feature is used to split the data across all trees.

• ‘gain’: the average gain across all splits the feature is used in.

• ‘cover’: the average coverage across all splits the feature is used in.

• ‘total_gain’: the total gain across all splits the feature is used in.

• ‘total_cover’: the total coverage across all splits the feature is used in.

Parameters
importance_type (str, default 'weight') – One of the importance types defined
above.

hasDefault(param)

Checks whether a param has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

hasParam(paramName)
Tests whether this instance contains a param with a given (string) name.

Parameters
paramName (str) –

Return type
bool

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

isSet(param)

Checks whether a param is explicitly set by user.

Parameters
param (str | Param[Any]) –

Return type
bool

classmethod load(path)
Reads an ML instance from the input path, a shortcut of read().load(path).

Parameters
path (str) –
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Return type
RL

property params: List[Param]

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type
Param.

classmethod read()

Return the reader for loading the model.

save(path)
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

Parameters
path (str) –

Return type
None

set(param, value)
Sets a parameter in the embedded param map.

Parameters

• param (Param) –

• value (Any) –

Return type
None

transform(dataset, params=None)
Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset

• params (dict, optional) – an optional param map that overrides embedded params.

Returns
transformed dataset

Return type
pyspark.sql.DataFrame

uid

A unique id for the object.

write()

Return the writer for saving the model.

class xgboost.spark.SparkXGBRanker(**kwargs)
Bases: _SparkXGBEstimator

SparkXGBRanker is a PySpark ML estimator. It implements the XGBoost ranking algorithm based on XGBoost
python library, and it can be used in PySpark Pipeline and PySpark ML meta algorithms like CrossValidator/
TrainValidationSplit/ OneVsRest

SparkXGBRanker automatically supports most of the parameters in xgboost.XGBRanker constructor and most
of the parameters used in xgboost.XGBRanker fit and predict method.
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SparkXGBRanker doesn’t support setting gpu_id but support another param use_gpu, see doc below for more
details.

SparkXGBRanker doesn’t support setting base_margin explicitly as well, but support another param called
base_margin_col. see doc below for more details.

SparkXGBRanker doesn’t support setting output_margin, but we can get output margin from the raw prediction
column. See raw_prediction_col param doc below for more details.

SparkXGBRanker doesn’t support validate_features and output_margin param.

SparkXGBRanker doesn’t support setting nthread xgboost param, instead, the nthread param for each xgboost
worker will be set equal to spark.task.cpus config value.

Parameters

• callbacks – The export and import of the callback functions are at best effort. For details,
see xgboost.spark.SparkXGBRanker.callbacks param doc.

• validation_indicator_col – For params related to xgboost.XGBRanker train-
ing with evaluation dataset’s supervision, set xgboost.spark.XGBRanker.
validation_indicator_col parameter instead of setting the eval_set parameter in
xgboost.XGBRanker fit method.

• weight_col – To specify the weight of the training and validation dataset, set xgboost.
spark.SparkXGBRanker.weight_col parameter instead of setting sample_weight and
sample_weight_eval_set parameter in xgboost.XGBRanker fit method.

• xgb_model – Set the value to be the instance returned by xgboost.spark.
SparkXGBRankerModel.get_booster().

• num_workers – Integer that specifies the number of XGBoost workers to use. Each XGBoost
worker corresponds to one spark task.

• use_gpu – Boolean that specifies whether the executors are running on GPU instances.

• base_margin_col – To specify the base margins of the training and validation dataset,
set xgboost.spark.SparkXGBRanker.base_margin_col parameter instead of setting
base_margin and base_margin_eval_set in the xgboost.XGBRanker fit method.

• qid_col – To specify the qid of the training and validation dataset, set xgboost.spark.
SparkXGBRanker.qid_col parameter instead of setting qid / group, eval_qid / eval_group
in the xgboost.XGBRanker fit method.

• Note: (..) – The Parameters chart above contains parameters that need special handling.:
For a full list of parameters, see entries with Param(parent=. . . below.

• Note: – This API is experimental.:

Examples

>>> from xgboost.spark import SparkXGBRanker
>>> from pyspark.ml.linalg import Vectors
>>> ranker = SparkXGBRanker(qid_col="qid")
>>> df_train = spark.createDataFrame(
... [
... (Vectors.dense(1.0, 2.0, 3.0), 0, 0),
... (Vectors.dense(4.0, 5.0, 6.0), 1, 0),
... (Vectors.dense(9.0, 4.0, 8.0), 2, 0),
... (Vectors.sparse(3, {1: 1.0, 2: 5.5}), 0, 1),

(continues on next page)
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(continued from previous page)

... (Vectors.sparse(3, {1: 6.0, 2: 7.5}), 1, 1),

... (Vectors.sparse(3, {1: 8.0, 2: 9.5}), 2, 1),

... ],

... ["features", "label", "qid"],

... )
>>> df_test = spark.createDataFrame(
... [
... (Vectors.dense(1.5, 2.0, 3.0), 0),
... (Vectors.dense(4.5, 5.0, 6.0), 0),
... (Vectors.dense(9.0, 4.5, 8.0), 0),
... (Vectors.sparse(3, {1: 1.0, 2: 6.0}), 1),
... (Vectors.sparse(3, {1: 6.0, 2: 7.0}), 1),
... (Vectors.sparse(3, {1: 8.0, 2: 10.5}), 1),
... ],
... ["features", "qid"],
... )
>>> model = ranker.fit(df_train)
>>> model.transform(df_test).show()

clear(param)

Clears a param from the param map if it has been explicitly set.

Parameters
param (Param) –

Return type
None

copy(extra=None)
Creates a copy of this instance with the same uid and some extra params. The default implementation
creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and
returns the copy. Subclasses should override this method if the default approach is not sufficient.

Parameters

• extra (dict, optional) – Extra parameters to copy to the new instance

• self (P) –

Returns
Copy of this instance

Return type
Params

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a
string.

Parameters
param (str | Param) –

Return type
str

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.
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Return type
str

extractParamMap(extra=None)
Extracts the embedded default param values and user-supplied values, and then merges them with extra
values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with
ordering: default param values < user-supplied values < extra.

Parameters
extra (dict, optional) – extra param values

Returns
merged param map

Return type
dict

fit(dataset, params=None)
Fits a model to the input dataset with optional parameters.

New in version 1.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset.

• params (dict or list or tuple, optional) – an optional param map that overrides
embedded params. If a list/tuple of param maps is given, this calls fit on each param map
and returns a list of models.

Returns
fitted model(s)

Return type
Transformer or a list of Transformer

fitMultiple(dataset, paramMaps)
Fits a model to the input dataset for each param map in paramMaps.

New in version 2.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset.

• paramMaps (collections.abc.Sequence) – A Sequence of param maps.

Returns
A thread safe iterable which contains one model for each param map. Each call to
next(modelIterator) will return (index, model) where model was fit using paramMaps[index].
index values may not be sequential.

Return type
_FitMultipleIterator

getFeaturesCol()

Gets the value of featuresCol or its default value.

Return type
str
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getLabelCol()

Gets the value of labelCol or its default value.

Return type
str

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is
set.

Parameters
param (str | Param[T]) –

Return type
Any | T

getParam(paramName)
Gets a param by its name.

Parameters
paramName (str) –

Return type
Param

getPredictionCol()

Gets the value of predictionCol or its default value.

Return type
str

getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

Return type
str

getWeightCol()

Gets the value of weightCol or its default value.

Return type
str

hasDefault(param)

Checks whether a param has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

hasParam(paramName)
Tests whether this instance contains a param with a given (string) name.

Parameters
paramName (str) –

Return type
bool
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isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

isSet(param)

Checks whether a param is explicitly set by user.

Parameters
param (str | Param[Any]) –

Return type
bool

classmethod load(path)
Reads an ML instance from the input path, a shortcut of read().load(path).

Parameters
path (str) –

Return type
RL

property params: List[Param]

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type
Param.

classmethod read()

Return the reader for loading the estimator.

save(path)
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

Parameters
path (str) –

Return type
None

set(param, value)
Sets a parameter in the embedded param map.

Parameters

• param (Param) –

• value (Any) –

Return type
None

setParams(**kwargs)
Set params for the estimator.

uid

A unique id for the object.
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write()

Return the writer for saving the estimator.

class xgboost.spark.SparkXGBRankerModel(xgb_sklearn_model=None)
Bases: _SparkXGBModel

The model returned by xgboost.spark.SparkXGBRanker.fit()

Note: This API is experimental.

clear(param)

Clears a param from the param map if it has been explicitly set.

Parameters
param (Param) –

Return type
None

copy(extra=None)
Creates a copy of this instance with the same uid and some extra params. The default implementation
creates a shallow copy using copy.copy(), and then copies the embedded and extra parameters over and
returns the copy. Subclasses should override this method if the default approach is not sufficient.

Parameters

• extra (dict, optional) – Extra parameters to copy to the new instance

• self (P) –

Returns
Copy of this instance

Return type
Params

explainParam(param)

Explains a single param and returns its name, doc, and optional default value and user-supplied value in a
string.

Parameters
param (str | Param) –

Return type
str

explainParams()

Returns the documentation of all params with their optionally default values and user-supplied values.

Return type
str

extractParamMap(extra=None)
Extracts the embedded default param values and user-supplied values, and then merges them with extra
values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with
ordering: default param values < user-supplied values < extra.

Parameters
extra (dict, optional) – extra param values
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Returns
merged param map

Return type
dict

getFeaturesCol()

Gets the value of featuresCol or its default value.

Return type
str

getLabelCol()

Gets the value of labelCol or its default value.

Return type
str

getOrDefault(param)

Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is
set.

Parameters
param (str | Param[T]) –

Return type
Any | T

getParam(paramName)
Gets a param by its name.

Parameters
paramName (str) –

Return type
Param

getPredictionCol()

Gets the value of predictionCol or its default value.

Return type
str

getValidationIndicatorCol()

Gets the value of validationIndicatorCol or its default value.

Return type
str

getWeightCol()

Gets the value of weightCol or its default value.

Return type
str

get_booster()

Return the xgboost.core.Booster instance.

get_feature_importances(importance_type='weight')
Get feature importance of each feature. Importance type can be defined as:

• ‘weight’: the number of times a feature is used to split the data across all trees.

262 Chapter 1. Contents

https://docs.python.org/3.8/library/stdtypes.html#dict
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/typing.html#typing.Any
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str


xgboost, Release 1.7.6

• ‘gain’: the average gain across all splits the feature is used in.

• ‘cover’: the average coverage across all splits the feature is used in.

• ‘total_gain’: the total gain across all splits the feature is used in.

• ‘total_cover’: the total coverage across all splits the feature is used in.

Parameters
importance_type (str, default 'weight') – One of the importance types defined
above.

hasDefault(param)

Checks whether a param has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

hasParam(paramName)
Tests whether this instance contains a param with a given (string) name.

Parameters
paramName (str) –

Return type
bool

isDefined(param)

Checks whether a param is explicitly set by user or has a default value.

Parameters
param (str | Param[Any]) –

Return type
bool

isSet(param)

Checks whether a param is explicitly set by user.

Parameters
param (str | Param[Any]) –

Return type
bool

classmethod load(path)
Reads an ML instance from the input path, a shortcut of read().load(path).

Parameters
path (str) –

Return type
RL

property params: List[Param]

Returns all params ordered by name. The default implementation uses dir() to get all attributes of type
Param.

1.10. XGBoost Python Package 263

https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/typing.html#typing.Any
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/typing.html#typing.Any
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/stdtypes.html#str
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/typing.html#typing.Any
https://docs.python.org/3.8/library/functions.html#bool
https://docs.python.org/3.8/library/stdtypes.html#str
https://docs.python.org/3.8/library/typing.html#typing.List
https://spark.apache.org/docs/latest/api/python/reference/api/pyspark.ml.param.Param.html#pyspark.ml.param.Param
https://docs.python.org/3.8/library/functions.html#dir


xgboost, Release 1.7.6

classmethod read()

Return the reader for loading the model.

save(path)
Save this ML instance to the given path, a shortcut of ‘write().save(path)’.

Parameters
path (str) –

Return type
None

set(param, value)
Sets a parameter in the embedded param map.

Parameters

• param (Param) –

• value (Any) –

Return type
None

transform(dataset, params=None)
Transforms the input dataset with optional parameters.

New in version 1.3.0.

Parameters

• dataset (pyspark.sql.DataFrame) – input dataset

• params (dict, optional) – an optional param map that overrides embedded params.

Returns
transformed dataset

Return type
pyspark.sql.DataFrame

uid

A unique id for the object.

write()

Return the writer for saving the model.

Callback Functions

This document gives a basic walkthrough of callback API used in XGBoost Python package. In XGBoost 1.3, a new
callback interface is designed for Python package, which provides the flexibility of designing various extension for
training. Also, XGBoost has a number of pre-defined callbacks for supporting early stopping, checkpoints etc.
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Using builtin callbacks

By default, training methods in XGBoost have parameters like early_stopping_rounds and
verbose/verbose_eval, when specified the training procedure will define the corresponding callbacks inter-
nally. For example, when early_stopping_rounds is specified, EarlyStopping callback is invoked inside
iteration loop. You can also pass this callback function directly into XGBoost:

D_train = xgb.DMatrix(X_train, y_train)
D_valid = xgb.DMatrix(X_valid, y_valid)

# Define a custom evaluation metric used for early stopping.
def eval_error_metric(predt, dtrain: xgb.DMatrix):

label = dtrain.get_label()
r = np.zeros(predt.shape)
gt = predt > 0.5
r[gt] = 1 - label[gt]
le = predt <= 0.5
r[le] = label[le]
return 'CustomErr', np.sum(r)

# Specify which dataset and which metric should be used for early stopping.
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds,

metric_name='CustomErr',
data_name='Train')

booster = xgb.train(
{'objective': 'binary:logistic',
'eval_metric': ['error', 'rmse'],
'tree_method': 'hist'}, D_train,

evals=[(D_train, 'Train'), (D_valid, 'Valid')],
feval=eval_error_metric,
num_boost_round=1000,
callbacks=[early_stop],
verbose_eval=False)

dump = booster.get_dump(dump_format='json')
assert len(early_stop.stopping_history['Valid']['CustomErr']) == len(dump)

Defining your own callback

XGBoost provides an callback interface class: TrainingCallback , user defined callbacks should inherit this class
and override corresponding methods. There’s a working example in Demo for using and defining callback functions.

1.10. XGBoost Python Package 265



xgboost, Release 1.7.6

Model

Slice tree model

When booster is set to gbtree or dart, XGBoost builds a tree model, which is a list of trees and can be sliced into
multiple sub-models.

from sklearn.datasets import make_classification
num_classes = 3
X, y = make_classification(n_samples=1000, n_informative=5,

n_classes=num_classes)
dtrain = xgb.DMatrix(data=X, label=y)
num_parallel_tree = 4
num_boost_round = 16
# total number of built trees is num_parallel_tree * num_classes * num_boost_round

# We build a boosted random forest for classification here.
booster = xgb.train({

'num_parallel_tree': 4, 'subsample': 0.5, 'num_class': 3},
num_boost_round=num_boost_round, dtrain=dtrain)

# This is the sliced model, containing [3, 7) forests
# step is also supported with some limitations like negative step is invalid.
sliced: xgb.Booster = booster[3:7]

# Access individual tree layer
trees = [_ for _ in booster]
assert len(trees) == num_boost_round

The sliced model is a copy of selected trees, that means the model itself is immutable during slicing. This feature is
the basis of save_best option in early stopping callback.

XGBoost Python Feature Walkthrough

This is a collection of examples for using the XGBoost Python package.

Demo for using xgboost with sklearn

from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_california_housing
import xgboost as xgb
import multiprocessing

if __name__ == "__main__":
print("Parallel Parameter optimization")
X, y = fetch_california_housing(return_X_y=True)
xgb_model = xgb.XGBRegressor(n_jobs=multiprocessing.cpu_count() // 2)
clf = GridSearchCV(xgb_model, {'max_depth': [2, 4, 6],

'n_estimators': [50, 100, 200]}, verbose=1,
n_jobs=2)

clf.fit(X, y)
(continues on next page)
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(continued from previous page)

print(clf.best_score_)
print(clf.best_params_)

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for obtaining leaf index

import os
import xgboost as xgb

# load data in do training
CURRENT_DIR = os.path.dirname(__file__)
dtrain = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.train'))
dtest = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.test'))
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 3
bst = xgb.train(param, dtrain, num_round, watchlist)

print('start testing predict the leaf indices')
# predict using first 2 tree
leafindex = bst.predict(

dtest, iteration_range=(0, 2), pred_leaf=True, strict_shape=True
)
print(leafindex.shape)
print(leafindex)
# predict all trees
leafindex = bst.predict(dtest, pred_leaf=True)
print(leafindex.shape)

Total running time of the script: ( 0 minutes 0.000 seconds)

This script demonstrate how to access the eval metrics

import os
import xgboost as xgb

CURRENT_DIR = os.path.dirname(__file__)
dtrain = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.train'))
dtest = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.test'))

param = [('max_depth', 2), ('objective', 'binary:logistic'), ('eval_metric', 'logloss'),␣
→˓('eval_metric', 'error')]

num_round = 2
watchlist = [(dtest,'eval'), (dtrain,'train')]

evals_result = {}
bst = xgb.train(param, dtrain, num_round, watchlist, evals_result=evals_result)

(continues on next page)
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print('Access logloss metric directly from evals_result:')
print(evals_result['eval']['logloss'])

print('')
print('Access metrics through a loop:')
for e_name, e_mtrs in evals_result.items():

print('- {}'.format(e_name))
for e_mtr_name, e_mtr_vals in e_mtrs.items():

print(' - {}'.format(e_mtr_name))
print(' - {}'.format(e_mtr_vals))

print('')
print('Access complete dictionary:')
print(evals_result)

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for gamma regression

import xgboost as xgb
import numpy as np

# this script demonstrates how to fit gamma regression model (with log link function)
# in xgboost, before running the demo you need to generate the autoclaims dataset
# by running gen_autoclaims.R located in xgboost/demo/data.

data = np.genfromtxt('../data/autoclaims.csv', delimiter=',')
dtrain = xgb.DMatrix(data[0:4741, 0:34], data[0:4741, 34])
dtest = xgb.DMatrix(data[4741:6773, 0:34], data[4741:6773, 34])

# for gamma regression, we need to set the objective to 'reg:gamma', it also suggests
# to set the base_score to a value between 1 to 5 if the number of iteration is small
param = {'objective':'reg:gamma', 'booster':'gbtree', 'base_score':3}

# the rest of settings are the same
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 30

# training and evaluation
bst = xgb.train(param, dtrain, num_round, watchlist)
preds = bst.predict(dtest)
labels = dtest.get_label()
print('test deviance=%f' % (2 * np.sum((labels - preds) / preds - np.log(labels) + np.
→˓log(preds))))

Total running time of the script: ( 0 minutes 0.000 seconds)
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Demo for boosting from prediction

import os
import xgboost as xgb

CURRENT_DIR = os.path.dirname(__file__)
dtrain = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.train'))
dtest = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.test'))
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
###
# advanced: start from a initial base prediction
#
print('start running example to start from a initial prediction')
# specify parameters via map, definition are same as c++ version
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
# train xgboost for 1 round
bst = xgb.train(param, dtrain, 1, watchlist)
# Note: we need the margin value instead of transformed prediction in
# set_base_margin
# do predict with output_margin=True, will always give you margin values
# before logistic transformation
ptrain = bst.predict(dtrain, output_margin=True)
ptest = bst.predict(dtest, output_margin=True)
dtrain.set_base_margin(ptrain)
dtest.set_base_margin(ptest)

print('this is result of running from initial prediction')
bst = xgb.train(param, dtrain, 1, watchlist)

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for using feature weight to change column sampling

New in version 1.3.0.

import numpy as np
import xgboost
from matplotlib import pyplot as plt
import argparse

def main(args):
rng = np.random.RandomState(1994)

kRows = 1000
kCols = 10

X = rng.randn(kRows, kCols)
y = rng.randn(kRows)
fw = np.ones(shape=(kCols,))
for i in range(kCols):

(continues on next page)
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fw[i] *= float(i)

dtrain = xgboost.DMatrix(X, y)
dtrain.set_info(feature_weights=fw)

bst = xgboost.train({'tree_method': 'hist',
'colsample_bynode': 0.2},
dtrain, num_boost_round=10,
evals=[(dtrain, 'd')])

feature_map = bst.get_fscore()
# feature zero has 0 weight
assert feature_map.get('f0', None) is None
assert max(feature_map.values()) == feature_map.get('f9')

if args.plot:
xgboost.plot_importance(bst)
plt.show()

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(

'--plot',
type=int,
default=1,
help='Set to 0 to disable plotting the evaluation history.')

args = parser.parse_args()
main(args)

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for accessing the xgboost eval metrics by using sklearn interface

import xgboost as xgb
import numpy as np
from sklearn.datasets import make_hastie_10_2

X, y = make_hastie_10_2(n_samples=2000, random_state=42)

# Map labels from {-1, 1} to {0, 1}
labels, y = np.unique(y, return_inverse=True)

X_train, X_test = X[:1600], X[1600:]
y_train, y_test = y[:1600], y[1600:]

param_dist = {'objective':'binary:logistic', 'n_estimators':2}

clf = xgb.XGBModel(**param_dist)
# Or you can use: clf = xgb.XGBClassifier(**param_dist)

clf.fit(X_train, y_train,
(continues on next page)
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eval_set=[(X_train, y_train), (X_test, y_test)],
eval_metric='logloss',
verbose=True)

# Load evals result by calling the evals_result() function
evals_result = clf.evals_result()

print('Access logloss metric directly from validation_0:')
print(evals_result['validation_0']['logloss'])

print('')
print('Access metrics through a loop:')
for e_name, e_mtrs in evals_result.items():

print('- {}'.format(e_name))
for e_mtr_name, e_mtr_vals in e_mtrs.items():

print(' - {}'.format(e_mtr_name))
print(' - {}'.format(e_mtr_vals))

print('')
print('Access complete dict:')
print(evals_result)

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for GLM

import os
import xgboost as xgb
##
# this script demonstrate how to fit generalized linear model in xgboost
# basically, we are using linear model, instead of tree for our boosters
##
CURRENT_DIR = os.path.dirname(__file__)
dtrain = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.train'))
dtest = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.test'))
# change booster to gblinear, so that we are fitting a linear model
# alpha is the L1 regularizer
# lambda is the L2 regularizer
# you can also set lambda_bias which is L2 regularizer on the bias term
param = {'objective':'binary:logistic', 'booster':'gblinear',

'alpha': 0.0001, 'lambda': 1}

# normally, you do not need to set eta (step_size)
# XGBoost uses a parallel coordinate descent algorithm (shotgun),
# there could be affection on convergence with parallelization on certain cases
# setting eta to be smaller value, e.g 0.5 can make the optimization more stable
# param['eta'] = 1

##
# the rest of settings are the same
##

(continues on next page)
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watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 4
bst = xgb.train(param, dtrain, num_round, watchlist)
preds = bst.predict(dtest)
labels = dtest.get_label()
print('error=%f' % (sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) !=␣
→˓labels[i]) / float(len(preds))))

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for prediction using number of trees

import os
import numpy as np
import xgboost as xgb
from sklearn.datasets import load_svmlight_file

CURRENT_DIR = os.path.dirname(__file__)
train = os.path.join(CURRENT_DIR, "../data/agaricus.txt.train")
test = os.path.join(CURRENT_DIR, "../data/agaricus.txt.test")

def native_interface():
# load data in do training
dtrain = xgb.DMatrix(train)
dtest = xgb.DMatrix(test)
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}
watchlist = [(dtest, "eval"), (dtrain, "train")]
num_round = 3
bst = xgb.train(param, dtrain, num_round, watchlist)

print("start testing prediction from first n trees")
# predict using first 1 tree
label = dtest.get_label()
ypred1 = bst.predict(dtest, iteration_range=(0, 1))
# by default, we predict using all the trees
ypred2 = bst.predict(dtest)

print("error of ypred1=%f" % (np.sum((ypred1 > 0.5) != label) / float(len(label))))
print("error of ypred2=%f" % (np.sum((ypred2 > 0.5) != label) / float(len(label))))

def sklearn_interface():
X_train, y_train = load_svmlight_file(train)
X_test, y_test = load_svmlight_file(test)
clf = xgb.XGBClassifier(n_estimators=3, max_depth=2, eta=1)
clf.fit(X_train, y_train, eval_set=[(X_test, y_test)])
assert clf.n_classes_ == 2

print("start testing prediction from first n trees")
# predict using first 1 tree

(continues on next page)
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ypred1 = clf.predict(X_test, iteration_range=(0, 1))
# by default, we predict using all the trees
ypred2 = clf.predict(X_test)

print(
"error of ypred1=%f" % (np.sum((ypred1 > 0.5) != y_test) / float(len(y_test)))

)
print(

"error of ypred2=%f" % (np.sum((ypred2 > 0.5) != y_test) / float(len(y_test)))
)

if __name__ == "__main__":
native_interface()
sklearn_interface()

Total running time of the script: ( 0 minutes 0.000 seconds)

Getting started with XGBoost

This is a simple example of using the native XGBoost interface, there are other interfaces in the Python package like
scikit-learn interface and Dask interface.

See Python Package Introduction and XGBoost Tutorials for other references.

import numpy as np
import pickle
import xgboost as xgb
import os

from sklearn.datasets import load_svmlight_file

# Make sure the demo knows where to load the data.
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
XGBOOST_ROOT_DIR = os.path.dirname(os.path.dirname(CURRENT_DIR))
DEMO_DIR = os.path.join(XGBOOST_ROOT_DIR, "demo")

# X is a scipy csr matrix, XGBoost supports many other input types,
X, y = load_svmlight_file(os.path.join(DEMO_DIR, "data", "agaricus.txt.train"))
dtrain = xgb.DMatrix(X, y)
# validation set
X_test, y_test = load_svmlight_file(os.path.join(DEMO_DIR, "data", "agaricus.txt.test"))
dtest = xgb.DMatrix(X_test, y_test)

# specify parameters via map, definition are same as c++ version
param = {"max_depth": 2, "eta": 1, "objective": "binary:logistic"}

# specify validations set to watch performance
watchlist = [(dtest, "eval"), (dtrain, "train")]
# number of boosting rounds
num_round = 2
bst = xgb.train(param, dtrain, num_boost_round=num_round, evals=watchlist)

(continues on next page)
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# run prediction
preds = bst.predict(dtest)
labels = dtest.get_label()
print(

"error=%f"
% (

sum(1 for i in range(len(preds)) if int(preds[i] > 0.5) != labels[i])
/ float(len(preds))

)
)
bst.save_model("model-0.json")
# dump model
bst.dump_model("dump.raw.txt")
# dump model with feature map
bst.dump_model("dump.nice.txt", os.path.join(DEMO_DIR, "data/featmap.txt"))

# save dmatrix into binary buffer
dtest.save_binary("dtest.dmatrix")
# save model
bst.save_model("model-1.json")
# load model and data in
bst2 = xgb.Booster(model_file="model-1.json")
dtest2 = xgb.DMatrix("dtest.dmatrix")
preds2 = bst2.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds2 - preds)) == 0

# alternatively, you can pickle the booster
pks = pickle.dumps(bst2)
# load model and data in
bst3 = pickle.loads(pks)
preds3 = bst3.predict(dtest2)
# assert they are the same
assert np.sum(np.abs(preds3 - preds)) == 0

Total running time of the script: ( 0 minutes 0.000 seconds)

Getting started with categorical data

Experimental support for categorical data. After 1.5 XGBoost gpu_hist tree method has experimental support for
one-hot encoding based tree split, and in 1.6 approx support was added.

In before, users need to run an encoder themselves before passing the data into XGBoost, which creates a sparse
matrix and potentially increase memory usage. This demo showcases the experimental categorical data support, more
advanced features are planned.

Also, see the tutorial for using XGBoost with categorical data.

New in version 1.5.0.

from typing import Tuple

(continues on next page)
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import numpy as np
import pandas as pd

import xgboost as xgb

def make_categorical(
n_samples: int, n_features: int, n_categories: int, onehot: bool

) -> Tuple[pd.DataFrame, pd.Series]:
"""Make some random data for demo."""
rng = np.random.RandomState(1994)

pd_dict = {}
for i in range(n_features + 1):

c = rng.randint(low=0, high=n_categories, size=n_samples)
pd_dict[str(i)] = pd.Series(c, dtype=np.int64)

df = pd.DataFrame(pd_dict)
label = df.iloc[:, 0]
df = df.iloc[:, 1:]
for i in range(0, n_features):

label += df.iloc[:, i]
label += 1

df = df.astype("category")
categories = np.arange(0, n_categories)
for col in df.columns:

df[col] = df[col].cat.set_categories(categories)

if onehot:
return pd.get_dummies(df), label

return df, label

def main() -> None:
# Use builtin categorical data support
# For scikit-learn interface, the input data must be pandas DataFrame or cudf
# DataFrame with categorical features
X, y = make_categorical(100, 10, 4, False)
# Specify `enable_categorical` to True, also we use onehot encoding based split
# here for demonstration. For details see the document of `max_cat_to_onehot`.
reg = xgb.XGBRegressor(

tree_method="gpu_hist", enable_categorical=True, max_cat_to_onehot=5
)
reg.fit(X, y, eval_set=[(X, y)])

# Pass in already encoded data
X_enc, y_enc = make_categorical(100, 10, 4, True)
reg_enc = xgb.XGBRegressor(tree_method="gpu_hist")
reg_enc.fit(X_enc, y_enc, eval_set=[(X_enc, y_enc)])

reg_results = np.array(reg.evals_result()["validation_0"]["rmse"])

(continues on next page)
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reg_enc_results = np.array(reg_enc.evals_result()["validation_0"]["rmse"])

# Check that they have same results
np.testing.assert_allclose(reg_results, reg_enc_results)

# Convert to DMatrix for SHAP value
booster: xgb.Booster = reg.get_booster()
m = xgb.DMatrix(X, enable_categorical=True) # specify categorical data support.
SHAP = booster.predict(m, pred_contribs=True)
margin = booster.predict(m, output_margin=True)
np.testing.assert_allclose(

np.sum(SHAP, axis=len(SHAP.shape) - 1), margin, rtol=1e-3
)

if __name__ == "__main__":
main()

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for using cross validation

import os
import numpy as np
import xgboost as xgb

# load data in do training
CURRENT_DIR = os.path.dirname(__file__)
dtrain = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.train'))
param = {'max_depth':2, 'eta':1, 'objective':'binary:logistic'}
num_round = 2

print('running cross validation')
# do cross validation, this will print result out as
# [iteration] metric_name:mean_value+std_value
# std_value is standard deviation of the metric
xgb.cv(param, dtrain, num_round, nfold=5,

metrics={'error'}, seed=0,
callbacks=[xgb.callback.EvaluationMonitor(show_stdv=True)])

print('running cross validation, disable standard deviation display')
# do cross validation, this will print result out as
# [iteration] metric_name:mean_value
res = xgb.cv(param, dtrain, num_boost_round=10, nfold=5,

metrics={'error'}, seed=0,
callbacks=[xgb.callback.EvaluationMonitor(show_stdv=False),

xgb.callback.EarlyStopping(3)])
print(res)
print('running cross validation, with preprocessing function')
# define the preprocessing function
# used to return the preprocessed training, test data, and parameter

(continues on next page)
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# we can use this to do weight rescale, etc.
# as a example, we try to set scale_pos_weight
def fpreproc(dtrain, dtest, param):

label = dtrain.get_label()
ratio = float(np.sum(label == 0)) / np.sum(label == 1)
param['scale_pos_weight'] = ratio
return (dtrain, dtest, param)

# do cross validation, for each fold
# the dtrain, dtest, param will be passed into fpreproc
# then the return value of fpreproc will be used to generate
# results of that fold
xgb.cv(param, dtrain, num_round, nfold=5,

metrics={'auc'}, seed=0, fpreproc=fpreproc)

###
# you can also do cross validation with customized loss function
# See custom_objective.py
##
print('running cross validation, with customized loss function')
def logregobj(preds, dtrain):

labels = dtrain.get_label()
preds = 1.0 / (1.0 + np.exp(-preds))
grad = preds - labels
hess = preds * (1.0 - preds)
return grad, hess

def evalerror(preds, dtrain):
labels = dtrain.get_label()
return 'error', float(sum(labels != (preds > 0.0))) / len(labels)

param = {'max_depth':2, 'eta':1}
# train with customized objective
xgb.cv(param, dtrain, num_round, nfold=5, seed=0,

obj=logregobj, feval=evalerror)

Total running time of the script: ( 0 minutes 0.000 seconds)

Collection of examples for using sklearn interface

Created on 1 Apr 2015

@author: Jamie Hall

import pickle
import xgboost as xgb

import numpy as np
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
from sklearn.metrics import confusion_matrix, mean_squared_error
from sklearn.datasets import load_iris, load_digits, fetch_california_housing

rng = np.random.RandomState(31337)
(continues on next page)
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print("Zeros and Ones from the Digits dataset: binary classification")
digits = load_digits(n_class=2)
y = digits['target']
X = digits['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X):

xgb_model = xgb.XGBClassifier(n_jobs=1).fit(X[train_index], y[train_index])
predictions = xgb_model.predict(X[test_index])
actuals = y[test_index]
print(confusion_matrix(actuals, predictions))

print("Iris: multiclass classification")
iris = load_iris()
y = iris['target']
X = iris['data']
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X):

xgb_model = xgb.XGBClassifier(n_jobs=1).fit(X[train_index], y[train_index])
predictions = xgb_model.predict(X[test_index])
actuals = y[test_index]
print(confusion_matrix(actuals, predictions))

print("California Housing: regression")
X, y = fetch_california_housing(return_X_y=True)
kf = KFold(n_splits=2, shuffle=True, random_state=rng)
for train_index, test_index in kf.split(X):

xgb_model = xgb.XGBRegressor(n_jobs=1).fit(X[train_index], y[train_index])
predictions = xgb_model.predict(X[test_index])
actuals = y[test_index]
print(mean_squared_error(actuals, predictions))

print("Parameter optimization")
xgb_model = xgb.XGBRegressor(n_jobs=1)
clf = GridSearchCV(xgb_model,

{'max_depth': [2, 4],
'n_estimators': [50, 100]}, verbose=1, n_jobs=1, cv=3)

clf.fit(X, y)
print(clf.best_score_)
print(clf.best_params_)

# The sklearn API models are picklable
print("Pickling sklearn API models")
# must open in binary format to pickle
pickle.dump(clf, open("best_calif.pkl", "wb"))
clf2 = pickle.load(open("best_calif.pkl", "rb"))
print(np.allclose(clf.predict(X), clf2.predict(X)))

# Early-stopping

X = digits['data']
y = digits['target']

(continues on next page)
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X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
clf = xgb.XGBClassifier(n_jobs=1)
clf.fit(X_train, y_train, early_stopping_rounds=10, eval_metric="auc",

eval_set=[(X_test, y_test)])

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for using data iterator with Quantile DMatrix

New in version 1.2.0.

The demo that defines a customized iterator for passing batches of data into xgboost.DeviceQuantileDMatrix and use
this DeviceQuantileDMatrix for training. The feature is used primarily designed to reduce the required GPU memory
for training on distributed environment.

Aftering going through the demo, one might ask why don’t we use more native Python iterator? That’s because XG-
Boost requires a reset function, while using itertools.tee might incur significant memory usage according to:

https://docs.python.org/3/library/itertools.html#itertools.tee.

import xgboost
import cupy
import numpy

COLS = 64
ROWS_PER_BATCH = 1000 # data is splited by rows
BATCHES = 32

class IterForDMatrixDemo(xgboost.core.DataIter):
'''A data iterator for XGBoost DMatrix.

`reset` and `next` are required for any data iterator, other functions here
are utilites for demonstration's purpose.

'''
def __init__(self):

'''Generate some random data for demostration.

Actual data can be anything that is currently supported by XGBoost.
'''
self.rows = ROWS_PER_BATCH
self.cols = COLS
rng = cupy.random.RandomState(1994)
self._data = [rng.randn(self.rows, self.cols)] * BATCHES
self._labels = [rng.randn(self.rows)] * BATCHES
self._weights = [rng.uniform(size=self.rows)] * BATCHES

self.it = 0 # set iterator to 0
super().__init__()

def as_array(self):
return cupy.concatenate(self._data)

(continues on next page)
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def as_array_labels(self):
return cupy.concatenate(self._labels)

def as_array_weights(self):
return cupy.concatenate(self._weights)

def data(self):
'''Utility function for obtaining current batch of data.'''
return self._data[self.it]

def labels(self):
'''Utility function for obtaining current batch of label.'''
return self._labels[self.it]

def weights(self):
return self._weights[self.it]

def reset(self):
'''Reset the iterator'''
self.it = 0

def next(self, input_data):
'''Yield next batch of data.'''
if self.it == len(self._data):

# Return 0 when there's no more batch.
return 0

input_data(data=self.data(), label=self.labels(),
weight=self.weights())

self.it += 1
return 1

def main():
rounds = 100
it = IterForDMatrixDemo()

# Use iterator, must be `DeviceQuantileDMatrix` for quantile DMatrix.
m_with_it = xgboost.DeviceQuantileDMatrix(it)

# Use regular DMatrix.
m = xgboost.DMatrix(it.as_array(), it.as_array_labels(),

weight=it.as_array_weights())

assert m_with_it.num_col() == m.num_col()
assert m_with_it.num_row() == m.num_row()

reg_with_it = xgboost.train({'tree_method': 'gpu_hist'}, m_with_it,
num_boost_round=rounds)

predict_with_it = reg_with_it.predict(m_with_it)

reg = xgboost.train({'tree_method': 'gpu_hist'}, m,
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num_boost_round=rounds)
predict = reg.predict(m)

numpy.testing.assert_allclose(predict_with_it, predict,
rtol=1e6)

if __name__ == '__main__':
main()

Total running time of the script: ( 0 minutes 0.000 seconds)

Experimental support for external memory

This is similar to the one in quantile_data_iterator.py, but for external memory instead of Quantile DMatrix. The
feature is not ready for production use yet.

New in version 1.5.0.

See the tutorial for more details.

import os
import xgboost
from typing import Callable, List, Tuple
from sklearn.datasets import make_regression
import tempfile
import numpy as np

def make_batches(
n_samples_per_batch: int, n_features: int, n_batches: int, tmpdir: str,

) -> List[Tuple[str, str]]:
files: List[Tuple[str, str]] = []
rng = np.random.RandomState(1994)
for i in range(n_batches):

X, y = make_regression(n_samples_per_batch, n_features, random_state=rng)
X_path = os.path.join(tmpdir, "X-" + str(i) + ".npy")
y_path = os.path.join(tmpdir, "y-" + str(i) + ".npy")
np.save(X_path, X)
np.save(y_path, y)
files.append((X_path, y_path))

return files

class Iterator(xgboost.DataIter):
"""A custom iterator for loading files in batches."""
def __init__(self, file_paths: List[Tuple[str, str]]):

self._file_paths = file_paths
self._it = 0
# XGBoost will generate some cache files under current directory with the prefix
# "cache"
super().__init__(cache_prefix=os.path.join(".", "cache"))

(continues on next page)
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def load_file(self) -> Tuple[np.ndarray, np.ndarray]:
X_path, y_path = self._file_paths[self._it]
X = np.load(X_path)
y = np.load(y_path)
assert X.shape[0] == y.shape[0]
return X, y

def next(self, input_data: Callable) -> int:
"""Advance the iterator by 1 step and pass the data to XGBoost. This function is
called by XGBoost during the construction of ``DMatrix``

"""
if self._it == len(self._file_paths):

# return 0 to let XGBoost know this is the end of iteration
return 0

# input_data is a function passed in by XGBoost who has the similar signature to
# the ``DMatrix`` constructor.
X, y = self.load_file()
input_data(data=X, label=y)
self._it += 1
return 1

def reset(self) -> None:
"""Reset the iterator to its beginning"""
self._it = 0

def main(tmpdir: str) -> xgboost.Booster:
# generate some random data for demo
files = make_batches(1024, 17, 31, tmpdir)
it = Iterator(files)
# For non-data arguments, specify it here once instead of passing them by the `next`
# method.
missing = np.NaN
Xy = xgboost.DMatrix(it, missing=missing, enable_categorical=False)

# Other tree methods including ``hist`` and ``gpu_hist`` also work, see tutorial in
# doc for details.
booster = xgboost.train(

{"tree_method": "approx", "max_depth": 2},
Xy,
evals=[(Xy, "Train")],
num_boost_round=10,

)
return booster

if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tmpdir:

main(tmpdir)
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Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for using process_type with prune and refresh

Modifying existing trees is not a well established use for XGBoost, so feel free to experiment.

import xgboost as xgb
from sklearn.datasets import fetch_california_housing
import numpy as np

def main():
n_rounds = 32

X, y = fetch_california_housing(return_X_y=True)

# Train a model first
X_train = X[: X.shape[0] // 2]
y_train = y[: y.shape[0] // 2]
Xy = xgb.DMatrix(X_train, y_train)
evals_result: xgb.callback.EvaluationMonitor.EvalsLog = {}
booster = xgb.train(

{"tree_method": "gpu_hist", "max_depth": 6},
Xy,
num_boost_round=n_rounds,
evals=[(Xy, "Train")],
evals_result=evals_result,

)
SHAP = booster.predict(Xy, pred_contribs=True)

# Refresh the leaf value and tree statistic
X_refresh = X[X.shape[0] // 2:]
y_refresh = y[y.shape[0] // 2:]
Xy_refresh = xgb.DMatrix(X_refresh, y_refresh)
# The model will adapt to other half of the data by changing leaf value (no change in
# split condition) with refresh_leaf set to True.
refresh_result: xgb.callback.EvaluationMonitor.EvalsLog = {}
refreshed = xgb.train(

{"process_type": "update", "updater": "refresh", "refresh_leaf": True},
Xy_refresh,
num_boost_round=n_rounds,
xgb_model=booster,
evals=[(Xy, "Original"), (Xy_refresh, "Train")],
evals_result=refresh_result,

)

# Refresh the model without changing the leaf value, but tree statistic including
# cover and weight are refreshed.
refresh_result: xgb.callback.EvaluationMonitor.EvalsLog = {}
refreshed = xgb.train(

{"process_type": "update", "updater": "refresh", "refresh_leaf": False},
Xy_refresh,

(continues on next page)
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num_boost_round=n_rounds,
xgb_model=booster,
evals=[(Xy, "Original"), (Xy_refresh, "Train")],
evals_result=refresh_result,

)
# Without refreshing the leaf value, resulting trees should be the same with original
# model except for accumulated statistic. The rtol is for floating point error in
# prediction.
np.testing.assert_allclose(

refresh_result["Original"]["rmse"], evals_result["Train"]["rmse"], rtol=1e-5
)
# But SHAP value is changed as cover in tree nodes are changed.
refreshed_SHAP = refreshed.predict(Xy, pred_contribs=True)
assert not np.allclose(SHAP, refreshed_SHAP, rtol=1e-3)

# Prune the trees with smaller max_depth
X_update = X_train
y_update = y_train
Xy_update = xgb.DMatrix(X_update, y_update)

prune_result: xgb.callback.EvaluationMonitor.EvalsLog = {}
pruned = xgb.train(

{"process_type": "update", "updater": "prune", "max_depth": 2},
Xy_update,
num_boost_round=n_rounds,
xgb_model=booster,
evals=[(Xy, "Original"), (Xy_update, "Train")],
evals_result=prune_result,

)
# Have a smaller model, but similar accuracy.
np.testing.assert_allclose(

np.array(prune_result["Original"]["rmse"]),
np.array(prune_result["Train"]["rmse"]),
atol=1e-5

)

if __name__ == "__main__":
main()

Total running time of the script: ( 0 minutes 0.000 seconds)

Train XGBoost with cat_in_the_dat dataset

A simple demo for categorical data support using dataset from Kaggle categorical data tutorial.

The excellent tutorial is at: https://www.kaggle.com/shahules/an-overview-of-encoding-techniques

And the data can be found at: https://www.kaggle.com/shahules/an-overview-of-encoding-techniques/data

Also, see the tutorial for using XGBoost with categorical data: Categorical Data.
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from __future__ import annotations

import os
from tempfile import TemporaryDirectory
from time import time

import pandas as pd
from sklearn.metrics import roc_auc_score
from sklearn.model_selection import train_test_split

import xgboost as xgb

def load_cat_in_the_dat() -> tuple[pd.DataFrame, pd.Series]:
"""Assuming you have already downloaded the data into `input` directory."""

df_train = pd.read_csv("./input/cat-in-the-dat/train.csv")

print(
"train data set has got {} rows and {} columns".format(

df_train.shape[0], df_train.shape[1]
)

)
X = df_train.drop(["target"], axis=1)
y = df_train["target"]

for i in range(0, 5):
X["bin_" + str(i)] = X["bin_" + str(i)].astype("category")

for i in range(0, 5):
X["nom_" + str(i)] = X["nom_" + str(i)].astype("category")

for i in range(5, 10):
X["nom_" + str(i)] = X["nom_" + str(i)].apply(int, base=16)

for i in range(0, 6):
X["ord_" + str(i)] = X["ord_" + str(i)].astype("category")

print(
"train data set has got {} rows and {} columns".format(X.shape[0], X.shape[1])

)
return X, y

params = {
"tree_method": "gpu_hist",
"n_estimators": 32,
"colsample_bylevel": 0.7,

}

def categorical_model(X: pd.DataFrame, y: pd.Series, output_dir: str) -> None:
"""Train using builtin categorical data support from XGBoost"""

(continues on next page)
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X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=1994, test_size=0.2

)
# Specify `enable_categorical` to True.
clf = xgb.XGBClassifier(

**params,
eval_metric="auc",
enable_categorical=True,
max_cat_to_onehot=1, # We use optimal partitioning exclusively

)
clf.fit(X_train, y_train, eval_set=[(X_test, y_test), (X_train, y_train)])
clf.save_model(os.path.join(output_dir, "categorical.json"))

y_score = clf.predict_proba(X_test)[:, 1] # proba of positive samples
auc = roc_auc_score(y_test, y_score)
print("AUC of using builtin categorical data support:", auc)

def onehot_encoding_model(X: pd.DataFrame, y: pd.Series, output_dir: str) -> None:
"""Train using one-hot encoded data."""
X_train, X_test, y_train, y_test = train_test_split(

X, y, random_state=42, test_size=0.2
)
# Specify `enable_categorical` to False as we are using encoded data.
clf = xgb.XGBClassifier(**params, eval_metric="auc", enable_categorical=False)
clf.fit(

X_train,
y_train,
eval_set=[(X_test, y_test), (X_train, y_train)],

)
clf.save_model(os.path.join(output_dir, "one-hot.json"))

y_score = clf.predict_proba(X_test)[:, 1] # proba of positive samples
auc = roc_auc_score(y_test, y_score)
print("AUC of using onehot encoding:", auc)

if __name__ == "__main__":
X, y = load_cat_in_the_dat()

with TemporaryDirectory() as tmpdir:
start = time()
categorical_model(X, y, tmpdir)
end = time()
print("Duration:categorical", end - start)

X = pd.get_dummies(X)
start = time()
onehot_encoding_model(X, y, tmpdir)
end = time()
print("Duration:onehot", end - start)

Total running time of the script: ( 0 minutes 0.000 seconds)
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A demo for multi-output regression

The demo is adopted from scikit-learn:

https://scikit-learn.org/stable/auto_examples/ensemble/plot_random_forest_regression_multioutput.html#
sphx-glr-auto-examples-ensemble-plot-random-forest-regression-multioutput-py

See Multiple Outputs for more information.

import argparse
from typing import Dict, Tuple, List

import numpy as np
from matplotlib import pyplot as plt
import xgboost as xgb

def plot_predt(y: np.ndarray, y_predt: np.ndarray, name: str) -> None:
s = 25
plt.scatter(y[:, 0], y[:, 1], c="navy", s=s, edgecolor="black", label="data")
plt.scatter(

y_predt[:, 0], y_predt[:, 1], c="cornflowerblue", s=s, edgecolor="black"
)
plt.xlim([-1, 2])
plt.ylim([-1, 2])
plt.show()

def gen_circle() -> Tuple[np.ndarray, np.ndarray]:
"Generate a sample dataset that y is a 2 dim circle."
rng = np.random.RandomState(1994)
X = np.sort(200 * rng.rand(100, 1) - 100, axis=0)
y = np.array([np.pi * np.sin(X).ravel(), np.pi * np.cos(X).ravel()]).T
y[::5, :] += 0.5 - rng.rand(20, 2)
y = y - y.min()
y = y / y.max()
return X, y

def rmse_model(plot_result: bool):
"""Draw a circle with 2-dim coordinate as target variables."""
X, y = gen_circle()
# Train a regressor on it
reg = xgb.XGBRegressor(tree_method="hist", n_estimators=64)
reg.fit(X, y, eval_set=[(X, y)])

y_predt = reg.predict(X)
if plot_result:

plot_predt(y, y_predt, "multi")

def custom_rmse_model(plot_result: bool) -> None:
"""Train using Python implementation of Squared Error."""

(continues on next page)
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# As the experimental support status, custom objective doesn't support matrix as
# gradient and hessian, which will be changed in future release.
def gradient(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:

"""Compute the gradient squared error."""
y = dtrain.get_label().reshape(predt.shape)
return (predt - y).reshape(y.size)

def hessian(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
"""Compute the hessian for squared error."""
return np.ones(predt.shape).reshape(predt.size)

def squared_log(
predt: np.ndarray, dtrain: xgb.DMatrix

) -> Tuple[np.ndarray, np.ndarray]:
grad = gradient(predt, dtrain)
hess = hessian(predt, dtrain)
return grad, hess

def rmse(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
y = dtrain.get_label().reshape(predt.shape)
v = np.sqrt(np.sum(np.power(y - predt, 2)))
return "PyRMSE", v

X, y = gen_circle()
Xy = xgb.DMatrix(X, y)
results: Dict[str, Dict[str, List[float]]] = {}
# Make sure the `num_target` is passed to XGBoost when custom objective is used.
# When builtin objective is used, XGBoost can figure out the number of targets
# automatically.
booster = xgb.train(

{
"tree_method": "hist",
"num_target": y.shape[1],

},
dtrain=Xy,
num_boost_round=100,
obj=squared_log,
evals=[(Xy, "Train")],
evals_result=results,
custom_metric=rmse,

)

y_predt = booster.inplace_predict(X)
if plot_result:

plot_predt(y, y_predt, "multi")

if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--plot", choices=[0, 1], type=int, default=1)
args = parser.parse_args()
# Train with builtin RMSE objective

(continues on next page)
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rmse_model(args.plot == 1)
# Train with custom objective.
custom_rmse_model(args.plot == 1)

Total running time of the script: ( 0 minutes 0.000 seconds)

Collection of examples for using xgboost.spark estimator interface

@author: Weichen Xu

import sklearn.datasets
from pyspark.ml.evaluation import MulticlassClassificationEvaluator, RegressionEvaluator
from pyspark.ml.linalg import Vectors
from pyspark.sql import SparkSession
from pyspark.sql.functions import rand
from sklearn.model_selection import train_test_split
from xgboost.spark import SparkXGBClassifier, SparkXGBRegressor

spark = SparkSession.builder.master("local[*]").getOrCreate()

def create_spark_df(X, y):
return spark.createDataFrame(

spark.sparkContext.parallelize(
[(Vectors.dense(features), float(label)) for features, label in zip(X, y)]

),
["features", "label"],

)

# load diabetes dataset (regression dataset)
diabetes_X, diabetes_y = sklearn.datasets.load_diabetes(return_X_y=True)
diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test = train_test_split(

diabetes_X, diabetes_y, test_size=0.3, shuffle=True
)

diabetes_train_spark_df = create_spark_df(diabetes_X_train, diabetes_y_train)
diabetes_test_spark_df = create_spark_df(diabetes_X_test, diabetes_y_test)

# train xgboost regressor model
xgb_regressor = SparkXGBRegressor(max_depth=5)
xgb_regressor_model = xgb_regressor.fit(diabetes_train_spark_df)

transformed_diabetes_test_spark_df = xgb_regressor_model.transform(
diabetes_test_spark_df

)
regressor_evaluator = RegressionEvaluator(metricName="rmse")
print(

f"regressor rmse={regressor_evaluator.evaluate(transformed_diabetes_test_spark_df)}"
)

(continues on next page)
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diabetes_train_spark_df2 = diabetes_train_spark_df.withColumn(
"validationIndicatorCol", rand(1) > 0.7

)

# train xgboost regressor model with validation dataset
xgb_regressor2 = SparkXGBRegressor(

max_depth=5, validation_indicator_col="validationIndicatorCol"
)
xgb_regressor_model2 = xgb_regressor2.fit(diabetes_train_spark_df2)
transformed_diabetes_test_spark_df2 = xgb_regressor_model2.transform(

diabetes_test_spark_df
)
print(

f"regressor2 rmse={regressor_evaluator.evaluate(transformed_diabetes_test_spark_df2)}
→˓"
)

# load iris dataset (classification dataset)
iris_X, iris_y = sklearn.datasets.load_iris(return_X_y=True)
iris_X_train, iris_X_test, iris_y_train, iris_y_test = train_test_split(

iris_X, iris_y, test_size=0.3, shuffle=True
)

iris_train_spark_df = create_spark_df(iris_X_train, iris_y_train)
iris_test_spark_df = create_spark_df(iris_X_test, iris_y_test)

# train xgboost classifier model
xgb_classifier = SparkXGBClassifier(max_depth=5)
xgb_classifier_model = xgb_classifier.fit(iris_train_spark_df)

transformed_iris_test_spark_df = xgb_classifier_model.transform(iris_test_spark_df)
classifier_evaluator = MulticlassClassificationEvaluator(metricName="f1")
print(f"classifier f1={classifier_evaluator.evaluate(transformed_iris_test_spark_df)}")

iris_train_spark_df2 = iris_train_spark_df.withColumn(
"validationIndicatorCol", rand(1) > 0.7

)

# train xgboost classifier model with validation dataset
xgb_classifier2 = SparkXGBClassifier(

max_depth=5, validation_indicator_col="validationIndicatorCol"
)
xgb_classifier_model2 = xgb_classifier2.fit(iris_train_spark_df2)
transformed_iris_test_spark_df2 = xgb_classifier_model2.transform(iris_test_spark_df)
print(

f"classifier2 f1={classifier_evaluator.evaluate(transformed_iris_test_spark_df2)}"
)

spark.stop()

Total running time of the script: ( 0 minutes 0.000 seconds)
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Demo for training continuation

from sklearn.datasets import load_breast_cancer
import xgboost
import pickle
import tempfile
import os

def training_continuation(tmpdir: str, use_pickle: bool) -> None:
"""Basic training continuation."""
# Train 128 iterations in 1 session
X, y = load_breast_cancer(return_X_y=True)
clf = xgboost.XGBClassifier(n_estimators=128)
clf.fit(X, y, eval_set=[(X, y)], eval_metric="logloss")
print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())

# Train 128 iterations in 2 sessions, with the first one runs for 32 iterations and
# the second one runs for 96 iterations
clf = xgboost.XGBClassifier(n_estimators=32)
clf.fit(X, y, eval_set=[(X, y)], eval_metric="logloss")
assert clf.get_booster().num_boosted_rounds() == 32

# load back the model, this could be a checkpoint
if use_pickle:

path = os.path.join(tmpdir, "model-first-32.pkl")
with open(path, "wb") as fd:

pickle.dump(clf, fd)
with open(path, "rb") as fd:

loaded = pickle.load(fd)
else:

path = os.path.join(tmpdir, "model-first-32.json")
clf.save_model(path)
loaded = xgboost.XGBClassifier()
loaded.load_model(path)

clf = xgboost.XGBClassifier(n_estimators=128 - 32)
clf.fit(X, y, eval_set=[(X, y)], eval_metric="logloss", xgb_model=loaded)

print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())

assert clf.get_booster().num_boosted_rounds() == 128

def training_continuation_early_stop(tmpdir: str, use_pickle: bool) -> None:
"""Training continuation with early stopping."""
early_stopping_rounds = 5
early_stop = xgboost.callback.EarlyStopping(

rounds=early_stopping_rounds, save_best=True
)
n_estimators = 512

X, y = load_breast_cancer(return_X_y=True)
(continues on next page)
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clf = xgboost.XGBClassifier(n_estimators=n_estimators)
clf.fit(X, y, eval_set=[(X, y)], eval_metric="logloss", callbacks=[early_stop])
print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())
best = clf.best_iteration

# Train 512 iterations in 2 sessions, with the first one runs for 128 iterations and
# the second one runs until early stop.
clf = xgboost.XGBClassifier(n_estimators=128)
# Reinitialize the early stop callback
early_stop = xgboost.callback.EarlyStopping(

rounds=early_stopping_rounds, save_best=True
)
clf.fit(X, y, eval_set=[(X, y)], eval_metric="logloss", callbacks=[early_stop])
assert clf.get_booster().num_boosted_rounds() == 128

# load back the model, this could be a checkpoint
if use_pickle:

path = os.path.join(tmpdir, "model-first-128.pkl")
with open(path, "wb") as fd:

pickle.dump(clf, fd)
with open(path, "rb") as fd:

loaded = pickle.load(fd)
else:

path = os.path.join(tmpdir, "model-first-128.json")
clf.save_model(path)
loaded = xgboost.XGBClassifier()
loaded.load_model(path)

early_stop = xgboost.callback.EarlyStopping(
rounds=early_stopping_rounds, save_best=True

)
clf = xgboost.XGBClassifier(n_estimators=n_estimators - 128)
clf.fit(

X,
y,
eval_set=[(X, y)],
eval_metric="logloss",
callbacks=[early_stop],
xgb_model=loaded,

)

print("Total boosted rounds:", clf.get_booster().num_boosted_rounds())
assert clf.best_iteration == best

if __name__ == "__main__":
with tempfile.TemporaryDirectory() as tmpdir:

training_continuation_early_stop(tmpdir, False)
training_continuation_early_stop(tmpdir, True)

training_continuation(tmpdir, True)
training_continuation(tmpdir, False)
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Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for using and defining callback functions

New in version 1.3.0.

import xgboost as xgb
import tempfile
import os
import numpy as np
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from matplotlib import pyplot as plt
import argparse

class Plotting(xgb.callback.TrainingCallback):
'''Plot evaluation result during training. Only for demonstration purpose as it's quite
slow to draw.

'''
def __init__(self, rounds):

self.fig = plt.figure()
self.ax = self.fig.add_subplot(111)
self.rounds = rounds
self.lines = {}
self.fig.show()
self.x = np.linspace(0, self.rounds, self.rounds)
plt.ion()

def _get_key(self, data, metric):
return f'{data}-{metric}'

def after_iteration(self, model, epoch, evals_log):
'''Update the plot.'''
if not self.lines:

for data, metric in evals_log.items():
for metric_name, log in metric.items():

key = self._get_key(data, metric_name)
expanded = log + [0] * (self.rounds - len(log))
self.lines[key], = self.ax.plot(self.x, expanded, label=key)
self.ax.legend()

else:
# https://pythonspot.com/matplotlib-update-plot/
for data, metric in evals_log.items():

for metric_name, log in metric.items():
key = self._get_key(data, metric_name)
expanded = log + [0] * (self.rounds - len(log))
self.lines[key].set_ydata(expanded)

self.fig.canvas.draw()
# False to indicate training should not stop.
return False

(continues on next page)
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def custom_callback():
'''Demo for defining a custom callback function that plots evaluation result during
training.'''
X, y = load_breast_cancer(return_X_y=True)
X_train, X_valid, y_train, y_valid = train_test_split(X, y, random_state=0)

D_train = xgb.DMatrix(X_train, y_train)
D_valid = xgb.DMatrix(X_valid, y_valid)

num_boost_round = 100
plotting = Plotting(num_boost_round)

# Pass it to the `callbacks` parameter as a list.
xgb.train(

{
'objective': 'binary:logistic',
'eval_metric': ['error', 'rmse'],
'tree_method': 'gpu_hist'

},
D_train,
evals=[(D_train, 'Train'), (D_valid, 'Valid')],
num_boost_round=num_boost_round,
callbacks=[plotting])

def check_point_callback():
# only for demo, set a larger value (like 100) in practice as checkpointing is quite
# slow.
rounds = 2

def check(as_pickle):
for i in range(0, 10, rounds):

if i == 0:
continue

if as_pickle:
path = os.path.join(tmpdir, 'model_' + str(i) + '.pkl')

else:
path = os.path.join(tmpdir, 'model_' + str(i) + '.json')

assert(os.path.exists(path))

X, y = load_breast_cancer(return_X_y=True)
m = xgb.DMatrix(X, y)
# Check point to a temporary directory for demo
with tempfile.TemporaryDirectory() as tmpdir:

# Use callback class from xgboost.callback
# Feel free to subclass/customize it to suit your need.
check_point = xgb.callback.TrainingCheckPoint(directory=tmpdir,

iterations=rounds,
name='model')

xgb.train({'objective': 'binary:logistic'}, m,

(continues on next page)
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num_boost_round=10,
verbose_eval=False,
callbacks=[check_point])

check(False)

# This version of checkpoint saves everything including parameters and
# model. See: doc/tutorials/saving_model.rst
check_point = xgb.callback.TrainingCheckPoint(directory=tmpdir,

iterations=rounds,
as_pickle=True,
name='model')

xgb.train({'objective': 'binary:logistic'}, m,
num_boost_round=10,
verbose_eval=False,
callbacks=[check_point])

check(True)

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--plot', default=1, type=int)
args = parser.parse_args()

check_point_callback()

if args.plot:
custom_callback()

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for creating customized multi-class objective function

This demo is only applicable after (excluding) XGBoost 1.0.0, as before this version XGBoost returns transformed
prediction for multi-class objective function. More details in comments.

See Custom Objective and Evaluation Metric for detailed tutorial and notes.

import numpy as np
import xgboost as xgb
from matplotlib import pyplot as plt
import argparse

np.random.seed(1994)

kRows = 100
kCols = 10
kClasses = 4 # number of classes

kRounds = 10 # number of boosting rounds.

# Generate some random data for demo.
X = np.random.randn(kRows, kCols)

(continues on next page)
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y = np.random.randint(0, 4, size=kRows)

m = xgb.DMatrix(X, y)

def softmax(x):
'''Softmax function with x as input vector.'''
e = np.exp(x)
return e / np.sum(e)

def softprob_obj(predt: np.ndarray, data: xgb.DMatrix):
'''Loss function. Computing the gradient and approximated hessian (diagonal).
Reimplements the `multi:softprob` inside XGBoost.

'''
labels = data.get_label()
if data.get_weight().size == 0:

# Use 1 as weight if we don't have custom weight.
weights = np.ones((kRows, 1), dtype=float)

else:
weights = data.get_weight()

# The prediction is of shape (rows, classes), each element in a row
# represents a raw prediction (leaf weight, hasn't gone through softmax
# yet). In XGBoost 1.0.0, the prediction is transformed by a softmax
# function, fixed in later versions.
assert predt.shape == (kRows, kClasses)

grad = np.zeros((kRows, kClasses), dtype=float)
hess = np.zeros((kRows, kClasses), dtype=float)

eps = 1e-6

# compute the gradient and hessian, slow iterations in Python, only
# suitable for demo. Also the one in native XGBoost core is more robust to
# numeric overflow as we don't do anything to mitigate the `exp` in
# `softmax` here.
for r in range(predt.shape[0]):

target = labels[r]
p = softmax(predt[r, :])
for c in range(predt.shape[1]):

assert target >= 0 or target <= kClasses
g = p[c] - 1.0 if c == target else p[c]
g = g * weights[r]
h = max((2.0 * p[c] * (1.0 - p[c]) * weights[r]).item(), eps)
grad[r, c] = g
hess[r, c] = h

# Right now (XGBoost 1.0.0), reshaping is necessary
grad = grad.reshape((kRows * kClasses, 1))
hess = hess.reshape((kRows * kClasses, 1))

(continues on next page)
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return grad, hess

def predict(booster: xgb.Booster, X):
'''A customized prediction function that converts raw prediction to
target class.

'''
# Output margin means we want to obtain the raw prediction obtained from
# tree leaf weight.
predt = booster.predict(X, output_margin=True)
out = np.zeros(kRows)
for r in range(predt.shape[0]):

# the class with maximum prob (not strictly prob as it haven't gone
# through softmax yet so it doesn't sum to 1, but result is the same
# for argmax).
i = np.argmax(predt[r])
out[r] = i

return out

def merror(predt: np.ndarray, dtrain: xgb.DMatrix):
y = dtrain.get_label()
# Like custom objective, the predt is untransformed leaf weight when custom objective
# is provided.

# With the use of `custom_metric` parameter in train function, custom metric receives
# raw input only when custom objective is also being used. Otherwise custom metric
# will receive transformed prediction.
assert predt.shape == (kRows, kClasses)
out = np.zeros(kRows)
for r in range(predt.shape[0]):

i = np.argmax(predt[r])
out[r] = i

assert y.shape == out.shape

errors = np.zeros(kRows)
errors[y != out] = 1.0
return 'PyMError', np.sum(errors) / kRows

def plot_history(custom_results, native_results):
fig, axs = plt.subplots(2, 1)
ax0 = axs[0]
ax1 = axs[1]

pymerror = custom_results['train']['PyMError']
merror = native_results['train']['merror']

x = np.arange(0, kRounds, 1)
ax0.plot(x, pymerror, label='Custom objective')

(continues on next page)
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ax0.legend()
ax1.plot(x, merror, label='multi:softmax')
ax1.legend()

plt.show()

def main(args):
custom_results = {}
# Use our custom objective function
booster_custom = xgb.train({'num_class': kClasses,

'disable_default_eval_metric': True},
m,
num_boost_round=kRounds,
obj=softprob_obj,
custom_metric=merror,
evals_result=custom_results,
evals=[(m, 'train')])

predt_custom = predict(booster_custom, m)

native_results = {}
# Use the same objective function defined in XGBoost.
booster_native = xgb.train({'num_class': kClasses,

"objective": "multi:softmax",
'eval_metric': 'merror'},

m,
num_boost_round=kRounds,
evals_result=native_results,
evals=[(m, 'train')])

predt_native = booster_native.predict(m)

# We are reimplementing the loss function in XGBoost, so it should
# be the same for normal cases.
assert np.all(predt_custom == predt_native)
np.testing.assert_allclose(custom_results['train']['PyMError'],

native_results['train']['merror'])

if args.plot != 0:
plot_history(custom_results, native_results)

if __name__ == '__main__':
parser = argparse.ArgumentParser(

description='Arguments for custom softmax objective function demo.')
parser.add_argument(

'--plot',
type=int,
default=1,
help='Set to 0 to disable plotting the evaluation history.')

args = parser.parse_args()
main(args)
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Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for defining a custom regression objective and metric

Demo for defining customized metric and objective. Notice that for simplicity reason weight is not used in following
example. In this script, we implement the Squared Log Error (SLE) objective and RMSLE metric as customized
functions, then compare it with native implementation in XGBoost.

See Custom Objective and Evaluation Metric for a step by step walkthrough, with other details.

The SLE objective reduces impact of outliers in training dataset, hence here we also compare its performance with
standard squared error.

import numpy as np
import xgboost as xgb
from typing import Tuple, Dict, List
from time import time
import argparse
import matplotlib
from matplotlib import pyplot as plt

# shape of generated data.
kRows = 4096
kCols = 16

kOutlier = 10000 # mean of generated outliers
kNumberOfOutliers = 64

kRatio = 0.7
kSeed = 1994

kBoostRound = 20

np.random.seed(seed=kSeed)

def generate_data() -> Tuple[xgb.DMatrix, xgb.DMatrix]:
'''Generate data containing outliers.'''
x = np.random.randn(kRows, kCols)
y = np.random.randn(kRows)
y += np.abs(np.min(y))

# Create outliers
for i in range(0, kNumberOfOutliers):

ind = np.random.randint(0, len(y)-1)
y[ind] += np.random.randint(0, kOutlier)

train_portion = int(kRows * kRatio)

# rmsle requires all label be greater than -1.
assert np.all(y > -1.0)

train_x: np.ndarray = x[: train_portion]
(continues on next page)
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train_y: np.ndarray = y[: train_portion]
dtrain = xgb.DMatrix(train_x, label=train_y)

test_x = x[train_portion:]
test_y = y[train_portion:]
dtest = xgb.DMatrix(test_x, label=test_y)
return dtrain, dtest

def native_rmse(dtrain: xgb.DMatrix,
dtest: xgb.DMatrix) -> Dict[str, Dict[str, List[float]]]:

'''Train using native implementation of Root Mean Squared Loss.'''
print('Squared Error')
squared_error = {

'objective': 'reg:squarederror',
'eval_metric': 'rmse',
'tree_method': 'hist',
'seed': kSeed

}
start = time()
results: Dict[str, Dict[str, List[float]]] = {}
xgb.train(squared_error,

dtrain=dtrain,
num_boost_round=kBoostRound,
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
evals_result=results)

print('Finished Squared Error in:', time() - start, '\n')
return results

def native_rmsle(dtrain: xgb.DMatrix,
dtest: xgb.DMatrix) -> Dict[str, Dict[str, List[float]]]:

'''Train using native implementation of Squared Log Error.'''
print('Squared Log Error')
results: Dict[str, Dict[str, List[float]]] = {}
squared_log_error = {

'objective': 'reg:squaredlogerror',
'eval_metric': 'rmsle',
'tree_method': 'hist',
'seed': kSeed

}
start = time()
xgb.train(squared_log_error,

dtrain=dtrain,
num_boost_round=kBoostRound,
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
evals_result=results)

print('Finished Squared Log Error in:', time() - start)
return results

def py_rmsle(dtrain: xgb.DMatrix, dtest: xgb.DMatrix) -> Dict:

(continues on next page)
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'''Train using Python implementation of Squared Log Error.'''
def gradient(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:

'''Compute the gradient squared log error.'''
y = dtrain.get_label()
return (np.log1p(predt) - np.log1p(y)) / (predt + 1)

def hessian(predt: np.ndarray, dtrain: xgb.DMatrix) -> np.ndarray:
'''Compute the hessian for squared log error.'''
y = dtrain.get_label()
return ((-np.log1p(predt) + np.log1p(y) + 1) /

np.power(predt + 1, 2))

def squared_log(predt: np.ndarray,
dtrain: xgb.DMatrix) -> Tuple[np.ndarray, np.ndarray]:

'''Squared Log Error objective. A simplified version for RMSLE used as
objective function.

:math:`\frac{1}{2}[log(pred + 1) - log(label + 1)]^2`

'''
predt[predt < -1] = -1 + 1e-6
grad = gradient(predt, dtrain)
hess = hessian(predt, dtrain)
return grad, hess

def rmsle(predt: np.ndarray, dtrain: xgb.DMatrix) -> Tuple[str, float]:
''' Root mean squared log error metric.

:math:`\sqrt{\frac{1}{N}[log(pred + 1) - log(label + 1)]^2}`
'''
y = dtrain.get_label()
predt[predt < -1] = -1 + 1e-6
elements = np.power(np.log1p(y) - np.log1p(predt), 2)
return 'PyRMSLE', float(np.sqrt(np.sum(elements) / len(y)))

results: Dict[str, Dict[str, List[float]]] = {}
xgb.train({'tree_method': 'hist', 'seed': kSeed,

'disable_default_eval_metric': 1},
dtrain=dtrain,
num_boost_round=kBoostRound,
obj=squared_log,
custom_metric=rmsle,
evals=[(dtrain, 'dtrain'), (dtest, 'dtest')],
evals_result=results)

return results

def plot_history(rmse_evals, rmsle_evals, py_rmsle_evals):
fig, axs = plt.subplots(3, 1)
ax0: matplotlib.axes.Axes = axs[0]
ax1: matplotlib.axes.Axes = axs[1]

(continues on next page)
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ax2: matplotlib.axes.Axes = axs[2]

x = np.arange(0, kBoostRound, 1)

ax0.plot(x, rmse_evals['dtrain']['rmse'], label='train-RMSE')
ax0.plot(x, rmse_evals['dtest']['rmse'], label='test-RMSE')
ax0.legend()

ax1.plot(x, rmsle_evals['dtrain']['rmsle'], label='train-native-RMSLE')
ax1.plot(x, rmsle_evals['dtest']['rmsle'], label='test-native-RMSLE')
ax1.legend()

ax2.plot(x, py_rmsle_evals['dtrain']['PyRMSLE'], label='train-PyRMSLE')
ax2.plot(x, py_rmsle_evals['dtest']['PyRMSLE'], label='test-PyRMSLE')
ax2.legend()

def main(args):
dtrain, dtest = generate_data()
rmse_evals = native_rmse(dtrain, dtest)
rmsle_evals = native_rmsle(dtrain, dtest)
py_rmsle_evals = py_rmsle(dtrain, dtest)

if args.plot != 0:
plot_history(rmse_evals, rmsle_evals, py_rmsle_evals)
plt.show()

if __name__ == "__main__":
parser = argparse.ArgumentParser(

description='Arguments for custom RMSLE objective function demo.')
parser.add_argument(

'--plot',
type=int,
default=1,
help='Set to 0 to disable plotting the evaluation history.')

args = parser.parse_args()
main(args)

Total running time of the script: ( 0 minutes 0.000 seconds)
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XGBoost Dask Feature Walkthrough

This directory contains some demonstrations for using dask with XGBoost. For an overview, see Distributed XGBoost
with Dask

Use scikit-learn regressor interface with CPU histogram tree method

from dask.distributed import Client
from dask.distributed import LocalCluster
from dask import array as da
import xgboost

def main(client):
# generate some random data for demonstration
n = 100
m = 10000
partition_size = 100
X = da.random.random((m, n), partition_size)
y = da.random.random(m, partition_size)

regressor = xgboost.dask.DaskXGBRegressor(verbosity=1, n_estimators=2)
regressor.set_params(tree_method="hist")
# assigning client here is optional
regressor.client = client

regressor.fit(X, y, eval_set=[(X, y)])
prediction = regressor.predict(X)

bst = regressor.get_booster()
history = regressor.evals_result()

print("Evaluation history:", history)
# returned prediction is always a dask array.
assert isinstance(prediction, da.Array)
return bst # returning the trained model

if __name__ == "__main__":
# or use other clusters for scaling
with LocalCluster(n_workers=4, threads_per_worker=1) as cluster:

with Client(cluster) as client:
main(client)

Total running time of the script: ( 0 minutes 0.000 seconds)
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Use scikit-learn regressor interface with GPU histogram tree method

from dask.distributed import Client
# It's recommended to use dask_cuda for GPU assignment
from dask_cuda import LocalCUDACluster
from dask import array as da
import xgboost

def main(client):
# generate some random data for demonstration
n = 100
m = 1000000
partition_size = 10000
X = da.random.random((m, n), partition_size)
y = da.random.random(m, partition_size)

regressor = xgboost.dask.DaskXGBRegressor(verbosity=1)
regressor.set_params(tree_method='gpu_hist')
# assigning client here is optional
regressor.client = client

regressor.fit(X, y, eval_set=[(X, y)])
prediction = regressor.predict(X)

bst = regressor.get_booster()
history = regressor.evals_result()

print('Evaluation history:', history)
# returned prediction is always a dask array.
assert isinstance(prediction, da.Array)
return bst # returning the trained model

if __name__ == '__main__':
# With dask cuda, one can scale up XGBoost to arbitrary GPU clusters.
# `LocalCUDACluster` used here is only for demonstration purpose.
with LocalCUDACluster() as cluster:

with Client(cluster) as client:
main(client)

Total running time of the script: ( 0 minutes 0.000 seconds)
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Example of training with Dask on CPU

import xgboost as xgb
from xgboost.dask import DaskDMatrix
from dask.distributed import Client
from dask.distributed import LocalCluster
from dask import array as da

def main(client):
# generate some random data for demonstration
m = 100000
n = 100
X = da.random.random(size=(m, n), chunks=100)
y = da.random.random(size=(m, ), chunks=100)

# DaskDMatrix acts like normal DMatrix, works as a proxy for local
# DMatrix scatter around workers.
dtrain = DaskDMatrix(client, X, y)

# Use train method from xgboost.dask instead of xgboost. This
# distributed version of train returns a dictionary containing the
# resulting booster and evaluation history obtained from
# evaluation metrics.
output = xgb.dask.train(client,

{'verbosity': 1,
'tree_method': 'hist'},

dtrain,
num_boost_round=4, evals=[(dtrain, 'train')])

bst = output['booster']
history = output['history']

# you can pass output directly into `predict` too.
prediction = xgb.dask.predict(client, bst, dtrain)
print('Evaluation history:', history)
return prediction

if __name__ == '__main__':
# or use other clusters for scaling
with LocalCluster(n_workers=7, threads_per_worker=4) as cluster:

with Client(cluster) as client:
main(client)

Total running time of the script: ( 0 minutes 0.000 seconds)
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Example of training survival model with Dask on CPU

import xgboost as xgb
import os
from xgboost.dask import DaskDMatrix
import dask.dataframe as dd
from dask.distributed import Client
from dask.distributed import LocalCluster

def main(client):
# Load an example survival data from CSV into a Dask data frame.
# The Veterans' Administration Lung Cancer Trial
# The Statistical Analysis of Failure Time Data by Kalbfleisch J. and Prentice R␣

→˓(1980)
CURRENT_DIR = os.path.dirname(__file__)
df = dd.read_csv(os.path.join(CURRENT_DIR, os.pardir, 'data', 'veterans_lung_cancer.

→˓csv'))

# DaskDMatrix acts like normal DMatrix, works as a proxy for local
# DMatrix scatter around workers.
# For AFT survival, you'd need to extract the lower and upper bounds for the label
# and pass them as arguments to DaskDMatrix.
y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound',

'Survival_label_upper_bound'], axis=1)
dtrain = DaskDMatrix(client, X, label_lower_bound=y_lower_bound,

label_upper_bound=y_upper_bound)

# Use train method from xgboost.dask instead of xgboost. This
# distributed version of train returns a dictionary containing the
# resulting booster and evaluation history obtained from
# evaluation metrics.
params = {'verbosity': 1,

'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'learning_rate': 0.05,
'aft_loss_distribution_scale': 1.20,
'aft_loss_distribution': 'normal',
'max_depth': 6,
'lambda': 0.01,
'alpha': 0.02}

output = xgb.dask.train(client,
params,
dtrain,
num_boost_round=100,
evals=[(dtrain, 'train')])

bst = output['booster']
history = output['history']

# you can pass output directly into `predict` too.
prediction = xgb.dask.predict(client, bst, dtrain)
print('Evaluation history: ', history)

(continues on next page)
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# Uncomment the following line to save the model to the disk
# bst.save_model('survival_model.json')

return prediction

if __name__ == '__main__':
# or use other clusters for scaling
with LocalCluster(n_workers=7, threads_per_worker=4) as cluster:

with Client(cluster) as client:
main(client)

Total running time of the script: ( 0 minutes 0.000 seconds)

Example of using callbacks with Dask

import numpy as np
import xgboost as xgb
from xgboost.dask import DaskDMatrix
from dask.distributed import Client
from dask.distributed import LocalCluster
from dask_ml.datasets import make_regression
from dask_ml.model_selection import train_test_split

def probability_for_going_backward(epoch):
return 0.999 / (1.0 + 0.05 * np.log(1.0 + epoch))

# All callback functions must inherit from TrainingCallback
class CustomEarlyStopping(xgb.callback.TrainingCallback):

"""A custom early stopping class where early stopping is determined stochastically.
In the beginning, allow the metric to become worse with a probability of 0.999.
As boosting progresses, the probability should be adjusted downward"""

def __init__(self, *, validation_set, target_metric, maximize, seed):
self.validation_set = validation_set
self.target_metric = target_metric
self.maximize = maximize
self.seed = seed
self.rng = np.random.default_rng(seed=seed)
if maximize:

self.better = lambda x, y: x > y
else:

self.better = lambda x, y: x < y

def after_iteration(self, model, epoch, evals_log):
metric_history = evals_log[self.validation_set][self.target_metric]
if len(metric_history) < 2 or self.better(

metric_history[-1], metric_history[-2]
(continues on next page)
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):
return False # continue training

p = probability_for_going_backward(epoch)
go_backward = self.rng.choice(2, size=(1,), replace=True, p=[1 - p, p]).astype(

np.bool
)[0]
print(

"The validation metric went into the wrong direction. "
+ f"Stopping training with probability {1 - p}..."

)
if go_backward:

return False # continue training
else:

return True # stop training

def main(client):
m = 100000
n = 100
X, y = make_regression(n_samples=m, n_features=n, chunks=200, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

dtrain = DaskDMatrix(client, X_train, y_train)
dtest = DaskDMatrix(client, X_test, y_test)

output = xgb.dask.train(
client,
{

"verbosity": 1,
"tree_method": "hist",
"objective": "reg:squarederror",
"eval_metric": "rmse",
"max_depth": 6,
"learning_rate": 1.0,

},
dtrain,
num_boost_round=1000,
evals=[(dtrain, "train"), (dtest, "test")],
callbacks=[

CustomEarlyStopping(
validation_set="test", target_metric="rmse", maximize=False, seed=0

)
],

)

if __name__ == "__main__":
# or use other clusters for scaling
with LocalCluster(n_workers=4, threads_per_worker=1) as cluster:

with Client(cluster) as client:
main(client)

Total running time of the script: ( 0 minutes 0.000 seconds)
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Example of training with Dask on GPU

from dask_cuda import LocalCUDACluster
import dask_cudf
from dask.distributed import Client
from dask import array as da
from dask import dataframe as dd
import xgboost as xgb
from xgboost import dask as dxgb
from xgboost.dask import DaskDMatrix

def using_dask_matrix(client: Client, X, y):
# DaskDMatrix acts like normal DMatrix, works as a proxy for local
# DMatrix scatter around workers.
dtrain = DaskDMatrix(client, X, y)

# Use train method from xgboost.dask instead of xgboost. This
# distributed version of train returns a dictionary containing the
# resulting booster and evaluation history obtained from
# evaluation metrics.
output = xgb.dask.train(client,

{'verbosity': 2,
# Golden line for GPU training
'tree_method': 'gpu_hist'},

dtrain,
num_boost_round=4, evals=[(dtrain, 'train')])

bst = output['booster']
history = output['history']

# you can pass output directly into `predict` too.
prediction = xgb.dask.predict(client, bst, dtrain)
print('Evaluation history:', history)
return prediction

def using_quantile_device_dmatrix(client: Client, X, y):
'''`DaskDeviceQuantileDMatrix` is a data type specialized for `gpu_hist`, tree
method that reduces memory overhead. When training on GPU pipeline, it's
preferred over `DaskDMatrix`.

.. versionadded:: 1.2.0

'''
# Input must be on GPU for `DaskDeviceQuantileDMatrix`.
X = dask_cudf.from_dask_dataframe(dd.from_dask_array(X))
y = dask_cudf.from_dask_dataframe(dd.from_dask_array(y))

# `DaskDeviceQuantileDMatrix` is used instead of `DaskDMatrix`, be careful
# that it can not be used for anything else other than training.
dtrain = dxgb.DaskQuantileDMatrix(client, X, y)
output = xgb.dask.train(client,

{'verbosity': 2,
(continues on next page)
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'tree_method': 'gpu_hist'},
dtrain,
num_boost_round=4)

prediction = xgb.dask.predict(client, output, X)
return prediction

if __name__ == '__main__':
# `LocalCUDACluster` is used for assigning GPU to XGBoost processes. Here
# `n_workers` represents the number of GPUs since we use one GPU per worker
# process.
with LocalCUDACluster(n_workers=2, threads_per_worker=4) as cluster:

with Client(cluster) as client:
# generate some random data for demonstration
m = 100000
n = 100
X = da.random.random(size=(m, n), chunks=10000)
y = da.random.random(size=(m, ), chunks=10000)

print('Using DaskQuantileDMatrix')
from_ddqdm = using_quantile_device_dmatrix(client, X, y)
print('Using DMatrix')
from_dmatrix = using_dask_matrix(client, X, y)

Total running time of the script: ( 0 minutes 0.000 seconds)

Survival Analysis Walkthrough

This is a collection of examples for using the XGBoost Python package for training survival models. For an introduction,
see Survival Analysis with Accelerated Failure Time

Demo for survival analysis (regression).

Demo for survival analysis (regression). using Accelerated Failure Time (AFT) model.

import os
from sklearn.model_selection import ShuffleSplit
import pandas as pd
import numpy as np
import xgboost as xgb

# The Veterans' Administration Lung Cancer Trial
# The Statistical Analysis of Failure Time Data by Kalbfleisch J. and Prentice R (1980)
CURRENT_DIR = os.path.dirname(__file__)
df = pd.read_csv(os.path.join(CURRENT_DIR, '../data/veterans_lung_cancer.csv'))
print('Training data:')
print(df)

# Split features and labels
(continues on next page)
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y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound', 'Survival_label_upper_bound'], axis=1)

# Split data into training and validation sets
rs = ShuffleSplit(n_splits=2, test_size=.7, random_state=0)
train_index, valid_index = next(rs.split(X))
dtrain = xgb.DMatrix(X.values[train_index, :])
dtrain.set_float_info('label_lower_bound', y_lower_bound[train_index])
dtrain.set_float_info('label_upper_bound', y_upper_bound[train_index])
dvalid = xgb.DMatrix(X.values[valid_index, :])
dvalid.set_float_info('label_lower_bound', y_lower_bound[valid_index])
dvalid.set_float_info('label_upper_bound', y_upper_bound[valid_index])

# Train gradient boosted trees using AFT loss and metric
params = {'verbosity': 0,

'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'tree_method': 'hist',
'learning_rate': 0.05,
'aft_loss_distribution': 'normal',
'aft_loss_distribution_scale': 1.20,
'max_depth': 6,
'lambda': 0.01,
'alpha': 0.02}

bst = xgb.train(params, dtrain, num_boost_round=10000,
evals=[(dtrain, 'train'), (dvalid, 'valid')],
early_stopping_rounds=50)

# Run prediction on the validation set
df = pd.DataFrame({'Label (lower bound)': y_lower_bound[valid_index],

'Label (upper bound)': y_upper_bound[valid_index],
'Predicted label': bst.predict(dvalid)})

print(df)
# Show only data points with right-censored labels
print(df[np.isinf(df['Label (upper bound)'])])

# Save trained model
bst.save_model('aft_model.json')

Total running time of the script: ( 0 minutes 0.000 seconds)

Visual demo for survival analysis (regression) with Accelerated Failure Time (AFT) model.

This demo uses 1D toy data and visualizes how XGBoost fits a tree ensemble. The ensemble model starts out as a flat
line and evolves into a step function in order to account for all ranged labels.

import numpy as np
import xgboost as xgb
import matplotlib.pyplot as plt

(continues on next page)
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plt.rcParams.update({'font.size': 13})

# Function to visualize censored labels
def plot_censored_labels(X, y_lower, y_upper):

def replace_inf(x, target_value):
x[np.isinf(x)] = target_value
return x

plt.plot(X, y_lower, 'o', label='y_lower', color='blue')
plt.plot(X, y_upper, 'o', label='y_upper', color='fuchsia')
plt.vlines(X, ymin=replace_inf(y_lower, 0.01), ymax=replace_inf(y_upper, 1000),

label='Range for y', color='gray')

# Toy data
X = np.array([1, 2, 3, 4, 5]).reshape((-1, 1))
INF = np.inf
y_lower = np.array([ 10, 15, -INF, 30, 100])
y_upper = np.array([INF, INF, 20, 50, INF])

# Visualize toy data
plt.figure(figsize=(5, 4))
plot_censored_labels(X, y_lower, y_upper)
plt.ylim((6, 200))
plt.legend(loc='lower right')
plt.title('Toy data')
plt.xlabel('Input feature')
plt.ylabel('Label')
plt.yscale('log')
plt.tight_layout()
plt.show(block=True)

# Will be used to visualize XGBoost model
grid_pts = np.linspace(0.8, 5.2, 1000).reshape((-1, 1))

# Train AFT model using XGBoost
dmat = xgb.DMatrix(X)
dmat.set_float_info('label_lower_bound', y_lower)
dmat.set_float_info('label_upper_bound', y_upper)
params = {'max_depth': 3, 'objective':'survival:aft', 'min_child_weight': 0}

accuracy_history = []
def plot_intermediate_model_callback(env):

"""Custom callback to plot intermediate models"""
# Compute y_pred = prediction using the intermediate model, at current boosting␣

→˓iteration
y_pred = env.model.predict(dmat)
# "Accuracy" = the number of data points whose ranged label (y_lower, y_upper)␣

→˓includes
# the corresponding predicted label (y_pred)
acc = np.sum(np.logical_and(y_pred >= y_lower, y_pred <= y_upper)/len(X) * 100)
accuracy_history.append(acc)

# Plot ranged labels as well as predictions by the model

(continues on next page)
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plt.subplot(5, 3, env.iteration + 1)
plot_censored_labels(X, y_lower, y_upper)
y_pred_grid_pts = env.model.predict(xgb.DMatrix(grid_pts))
plt.plot(grid_pts, y_pred_grid_pts, 'r-', label='XGBoost AFT model', linewidth=4)
plt.title('Iteration {}'.format(env.iteration), x=0.5, y=0.8)
plt.xlim((0.8, 5.2))
plt.ylim((1 if np.min(y_pred) < 6 else 6, 200))
plt.yscale('log')

res = {}
plt.figure(figsize=(12,13))
bst = xgb.train(params, dmat, 15, [(dmat, 'train')], evals_result=res,

callbacks=[plot_intermediate_model_callback])
plt.tight_layout()
plt.legend(loc='lower center', ncol=4,

bbox_to_anchor=(0.5, 0),
bbox_transform=plt.gcf().transFigure)

plt.tight_layout()

# Plot negative log likelihood over boosting iterations
plt.figure(figsize=(8,3))
plt.subplot(1, 2, 1)
plt.plot(res['train']['aft-nloglik'], 'b-o', label='aft-nloglik')
plt.xlabel('# Boosting Iterations')
plt.legend(loc='best')

# Plot "accuracy" over boosting iterations
# "Accuracy" = the number of data points whose ranged label (y_lower, y_upper) includes
# the corresponding predicted label (y_pred)
plt.subplot(1, 2, 2)
plt.plot(accuracy_history, 'r-o', label='Accuracy (%)')
plt.xlabel('# Boosting Iterations')
plt.legend(loc='best')
plt.tight_layout()

plt.show()

Total running time of the script: ( 0 minutes 0.000 seconds)

Demo for survival analysis (regression) with Optuna.

Demo for survival analysis (regression) using Accelerated Failure Time (AFT) model, using Optuna to tune hyperpa-
rameters

from sklearn.model_selection import ShuffleSplit
import pandas as pd
import numpy as np
import xgboost as xgb
import optuna

# The Veterans' Administration Lung Cancer Trial
(continues on next page)
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# The Statistical Analysis of Failure Time Data by Kalbfleisch J. and Prentice R (1980)
df = pd.read_csv('../data/veterans_lung_cancer.csv')
print('Training data:')
print(df)

# Split features and labels
y_lower_bound = df['Survival_label_lower_bound']
y_upper_bound = df['Survival_label_upper_bound']
X = df.drop(['Survival_label_lower_bound', 'Survival_label_upper_bound'], axis=1)

# Split data into training and validation sets
rs = ShuffleSplit(n_splits=2, test_size=.7, random_state=0)
train_index, valid_index = next(rs.split(X))
dtrain = xgb.DMatrix(X.values[train_index, :])
dtrain.set_float_info('label_lower_bound', y_lower_bound[train_index])
dtrain.set_float_info('label_upper_bound', y_upper_bound[train_index])
dvalid = xgb.DMatrix(X.values[valid_index, :])
dvalid.set_float_info('label_lower_bound', y_lower_bound[valid_index])
dvalid.set_float_info('label_upper_bound', y_upper_bound[valid_index])

# Define hyperparameter search space
base_params = {'verbosity': 0,

'objective': 'survival:aft',
'eval_metric': 'aft-nloglik',
'tree_method': 'hist'} # Hyperparameters common to all trials

def objective(trial):
params = {'learning_rate': trial.suggest_loguniform('learning_rate', 0.01, 1.0),

'aft_loss_distribution': trial.suggest_categorical('aft_loss_distribution',
['normal', 'logistic',

→˓'extreme']),
'aft_loss_distribution_scale': trial.suggest_loguniform('aft_loss_

→˓distribution_scale', 0.1, 10.0),
'max_depth': trial.suggest_int('max_depth', 3, 8),
'lambda': trial.suggest_loguniform('lambda', 1e-8, 1.0),
'alpha': trial.suggest_loguniform('alpha', 1e-8, 1.0)} # Search space

params.update(base_params)
pruning_callback = optuna.integration.XGBoostPruningCallback(trial, 'valid-aft-

→˓nloglik')
bst = xgb.train(params, dtrain, num_boost_round=10000,

evals=[(dtrain, 'train'), (dvalid, 'valid')],
early_stopping_rounds=50, verbose_eval=False, callbacks=[pruning_

→˓callback])
if bst.best_iteration >= 25:

return bst.best_score
else:

return np.inf # Reject models with < 25 trees

# Run hyperparameter search
study = optuna.create_study(direction='minimize')
study.optimize(objective, n_trials=200)
print('Completed hyperparameter tuning with best aft-nloglik = {}.'.format(study.best_
→˓trial.value))

(continues on next page)
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params = {}
params.update(base_params)
params.update(study.best_trial.params)

# Re-run training with the best hyperparameter combination
print('Re-running the best trial... params = {}'.format(params))
bst = xgb.train(params, dtrain, num_boost_round=10000,

evals=[(dtrain, 'train'), (dvalid, 'valid')],
early_stopping_rounds=50)

# Run prediction on the validation set
df = pd.DataFrame({'Label (lower bound)': y_lower_bound[valid_index],

'Label (upper bound)': y_upper_bound[valid_index],
'Predicted label': bst.predict(dvalid)})

print(df)
# Show only data points with right-censored labels
print(df[np.isinf(df['Label (upper bound)'])])

# Save trained model
bst.save_model('aft_best_model.json')

Total running time of the script: ( 0 minutes 0.000 seconds)

1.11 XGBoost R Package

You have found the XGBoost R Package!

1.11.1 Get Started

• Checkout the Installation Guide contains instructions to install xgboost, and Tutorials for examples on how to
use XGBoost for various tasks.

• Read the API documentation.

• Please visit Walk-through Examples.

1.11.2 Tutorials

XGBoost R Tutorial

Introduction

XGBoost is short for eXtreme Gradient Boosting package.

The purpose of this Vignette is to show you how to use XGBoost to build a model and make predictions.

It is an efficient and scalable implementation of gradient boosting framework by @friedman2000additive and @fried-
man2001greedy. Two solvers are included:

• linear model ;

• tree learning algorithm.

1.11. XGBoost R Package 315

https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
https://github.com/dmlc/xgboost/tree/master/R-package/demo


xgboost, Release 1.7.6

It supports various objective functions, including regression, classification and ranking. The package is made to be
extendible, so that users are also allowed to define their own objective functions easily.

It has been used to win several Kaggle competitions.

It has several features:

• Speed: it can automatically do parallel computation on Windows and Linux, with OpenMP. It is generally over
10 times faster than the classical gbm.

• Input Type: it takes several types of input data:

– Dense Matrix: R’s dense matrix, i.e. matrix ;

– Sparse Matrix: R’s sparse matrix, i.e. Matrix::dgCMatrix ;

– Data File: local data files ;

– xgb.DMatrix: its own class (recommended).

• Sparsity: it accepts sparse input for both tree booster and linear booster, and is optimized for sparse input ;

• Customization: it supports customized objective functions and evaluation functions.

Installation

GitHub version

For weekly updated version (highly recommended), install from GitHub:

install.packages("drat", repos="https://cran.rstudio.com")
drat:::addRepo("dmlc")
install.packages("xgboost", repos="http://dmlc.ml/drat/", type = "source")

Windows users will need to install Rtools first.

CRAN version

The version 0.4-2 is on CRAN, and you can install it by:

install.packages("xgboost")

Formerly available versions can be obtained from the CRAN archive

Learning

For the purpose of this tutorial we will load XGBoost package.

require(xgboost)

316 Chapter 1. Contents

https://github.com/dmlc/xgboost
http://www.kaggle.com
http://cran.r-project.org/bin/windows/Rtools/
http://cran.r-project.org/src/contrib/Archive/xgboost


xgboost, Release 1.7.6

Dataset presentation

In this example, we are aiming to predict whether a mushroom can be eaten or not (like in many tutorials, example data
are the same as you will use on in your every day life :-).

Mushroom data is cited from UCI Machine Learning Repository. @Bache+Lichman:2013.

Dataset loading

We will load the agaricus datasets embedded with the package and will link them to variables.

The datasets are already split in:

• train: will be used to build the model ;

• test: will be used to assess the quality of our model.

Why split the dataset in two parts?

In the first part we will build our model. In the second part we will want to test it and assess its quality. Without
dividing the dataset we would test the model on the data which the algorithm have already seen.

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test

In the real world, it would be up to you to make this division between train and test data. The way to
do it is out of scope for this article, however caret package may help.

Each variable is a list containing two things, label and data:

str(train)

## List of 2
## $ data :Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
## .. ..@ i : int [1:143286] 2 6 8 11 18 20 21 24 28 32 ...
## .. ..@ p : int [1:127] 0 369 372 3306 5845 6489 6513 8380 8384 10991 ...
## .. ..@ Dim : int [1:2] 6513 126
## .. ..@ Dimnames:List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:126] "cap-shape=bell" "cap-shape=conical" "cap-shape=convex"
→˓"cap-shape=flat" ...
## .. ..@ x : num [1:143286] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..@ factors : list()
## $ label: num [1:6513] 1 0 0 1 0 0 0 1 0 0 ...

label is the outcome of our dataset meaning it is the binary classification we will try to predict.

Let’s discover the dimensionality of our datasets.

dim(train$data)

## [1] 6513 126
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dim(test$data)

## [1] 1611 126

This dataset is very small to not make the R package too heavy, however XGBoost is built to manage huge datasets
very efficiently.

As seen below, the data are stored in a dgCMatrix which is a sparse matrix and label vector is a numeric vector
({0,1}):

class(train$data)[1]

## [1] "dgCMatrix"

class(train$label)

## [1] "numeric"

Basic Training using XGBoost

This step is the most critical part of the process for the quality of our model.

Basic training

We are using the train data. As explained above, both data and label are stored in a list.

In a sparse matrix, cells containing 0 are not stored in memory. Therefore, in a dataset mainly made of 0, memory size
is reduced. It is very common to have such a dataset.

We will train decision tree model using the following parameters:

• objective = "binary:logistic": we will train a binary classification model ;

• max.depth = 2: the trees won’t be deep, because our case is very simple ;

• nthread = 2: the number of CPU threads we are going to use;

• nrounds = 2: there will be two passes on the data, the second one will enhance the model by further reducing
the difference between ground truth and prediction.

bstSparse <- xgboost(data = train$data, label = train$label, max.depth = 2, eta = 1,␣
→˓nthread = 2, nrounds = 2, objective = "binary:logistic")

## [0] train-error:0.046522
## [1] train-error:0.022263

The more complex the relationship between your features and your label is, the more passes you need.
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Parameter variations

Dense matrix

Alternatively, you can put your dataset in a dense matrix, i.e. a basic R matrix.

bstDense <- xgboost(data = as.matrix(train$data), label = train$label, max.depth = 2,␣
→˓eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic")

## [0] train-error:0.046522
## [1] train-error:0.022263

xgb.DMatrix

XGBoost offers a way to group them in a xgb.DMatrix. You can even add other meta data in it. This will be useful
for the most advanced features we will discover later.

dtrain <- xgb.DMatrix(data = train$data, label = train$label)
bstDMatrix <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,␣
→˓objective = "binary:logistic")

## [0] train-error:0.046522
## [1] train-error:0.022263

Verbose option

XGBoost has several features to help you view the learning progress internally. The purpose is to help you to set the
best parameters, which is the key of your model quality.

One of the simplest way to see the training progress is to set the verbose option (see below for more advanced tech-
niques).

# verbose = 0, no message
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,␣
→˓objective = "binary:logistic", verbose = 0)

# verbose = 1, print evaluation metric
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,␣
→˓objective = "binary:logistic", verbose = 1)

## [0] train-error:0.046522
## [1] train-error:0.022263

# verbose = 2, also print information about tree
bst <- xgboost(data = dtrain, max.depth = 2, eta = 1, nthread = 2, nrounds = 2,␣
→˓objective = "binary:logistic", verbose = 2)

## [11:41:01] amalgamation/../src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 6␣
→˓extra nodes, 0 pruned nodes, max_depth=2

(continues on next page)
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## [0] train-error:0.046522
## [11:41:01] amalgamation/../src/tree/updater_prune.cc:74: tree pruning end, 1 roots, 4␣
→˓extra nodes, 0 pruned nodes, max_depth=2
## [1] train-error:0.022263

Basic prediction using XGBoost

Perform the prediction

The purpose of the model we have built is to classify new data. As explained before, we will use the test dataset for
this step.

pred <- predict(bst, test$data)

# size of the prediction vector
print(length(pred))

## [1] 1611

# limit display of predictions to the first 10
print(head(pred))

## [1] 0.28583017 0.92392391 0.28583017 0.28583017 0.05169873 0.92392391

These numbers doesn’t look like binary classification {0,1}. We need to perform a simple transformation before being
able to use these results.

Transform the regression in a binary classification

The only thing that XGBoost does is a regression. XGBoost is using label vector to build its regression model.

How can we use a regression model to perform a binary classification?

If we think about the meaning of a regression applied to our data, the numbers we get are probabilities that a datum
will be classified as 1. Therefore, we will set the rule that if this probability for a specific datum is > 0.5 then the
observation is classified as 1 (or 0 otherwise).

prediction <- as.numeric(pred > 0.5)
print(head(prediction))

## [1] 0 1 0 0 0 1
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Measuring model performance

To measure the model performance, we will compute a simple metric, the average error.

err <- mean(as.numeric(pred > 0.5) != test$label)
print(paste("test-error=", err))

## [1] "test-error= 0.0217256362507759"

Note that the algorithm has not seen the test data during the model construction.

Steps explanation:

1. as.numeric(pred > 0.5) applies our rule that when the probability (<=> regression <=> prediction) is >
0.5 the observation is classified as 1 and 0 otherwise ;

2. probabilityVectorPreviouslyComputed != test$label computes the vector of error between true data
and computed probabilities ;

3. mean(vectorOfErrors) computes the average error itself.

The most important thing to remember is that to do a classification, you just do a regression to the label and then
apply a threshold.

Multiclass classification works in a similar way.

This metric is 0.02 and is pretty low: our yummly mushroom model works well!

Advanced features

Most of the features below have been implemented to help you to improve your model by offering a better understanding
of its content.

Dataset preparation

For the following advanced features, we need to put data in xgb.DMatrix as explained above.

dtrain <- xgb.DMatrix(data = train$data, label=train$label)
dtest <- xgb.DMatrix(data = test$data, label=test$label)

Measure learning progress with xgb.train

Both xgboost (simple) and xgb.train (advanced) functions train models.

One of the special features of xgb.train is the capacity to follow the progress of the learning after each round. Because
of the way boosting works, there is a time when having too many rounds lead to overfitting. You can see this feature
as a cousin of a cross-validation method. The following techniques will help you to avoid overfitting or optimizing the
learning time in stopping it as soon as possible.

One way to measure progress in the learning of a model is to provide to XGBoost a second dataset already classified.
Therefore it can learn on the first dataset and test its model on the second one. Some metrics are measured after each
round during the learning.

in some way it is similar to what we have done above with the average error. The main difference is that
above it was after building the model, and now it is during the construction that we measure errors.
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For the purpose of this example, we use watchlist parameter. It is a list of xgb.DMatrix, each of them tagged with
a name.

watchlist <- list(train=dtrain, test=dtest)

bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nrounds=2,␣
→˓watchlist=watchlist, objective = "binary:logistic")

## [0] train-error:0.046522 test-error:0.042831
## [1] train-error:0.022263 test-error:0.021726

XGBoost has computed at each round the same average error metric seen above (we set nrounds to 2, that is why we
have two lines). Obviously, the train-error number is related to the training dataset (the one the algorithm learns
from) and the test-error number to the test dataset.

Both training and test error related metrics are very similar, and in some way, it makes sense: what we have learned
from the training dataset matches the observations from the test dataset.

If with your own dataset you do not have such results, you should think about how you divided your dataset in training
and test. May be there is something to fix. Again, caret package may help.

For a better understanding of the learning progression, you may want to have some specific metric or even use multiple
evaluation metrics.

bst <- xgb.train(data=dtrain, max.depth=2, eta=1, nthread = 2, nrounds=2,␣
→˓watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective =
→˓"binary:logistic")

## [0] train-error:0.046522 train-logloss:0.233376 test-error:0.
→˓042831 test-logloss:0.226686
## [1] train-error:0.022263 train-logloss:0.136658 test-error:0.
→˓021726 test-logloss:0.137874

eval.metric allows us to monitor two new metrics for each round, logloss and error.

Linear boosting

Until now, all the learnings we have performed were based on boosting trees. XGBoost implements a second algorithm,
based on linear boosting. The only difference with the previous command is booster = "gblinear" parameter (and
removing eta parameter).

bst <- xgb.train(data=dtrain, booster = "gblinear", nthread = 2, nrounds=2,␣
→˓watchlist=watchlist, eval.metric = "error", eval.metric = "logloss", objective =
→˓"binary:logistic")

## [0] train-error:0.024720 train-logloss:0.184616 test-error:0.
→˓022967 test-logloss:0.184234
## [1] train-error:0.004146 train-logloss:0.069885 test-error:0.
→˓003724 test-logloss:0.068081

In this specific case, linear boosting gets slightly better performance metrics than a decision tree based algorithm.

In simple cases, this will happen because there is nothing better than a linear algorithm to catch a linear link. However,
decision trees are much better to catch a non linear link between predictors and outcome. Because there is no silver
bullet, we advise you to check both algorithms with your own datasets to have an idea of what to use.
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Manipulating xgb.DMatrix

Save / Load

Like saving models, xgb.DMatrix object (which groups both dataset and outcome) can also be saved using xgb.
DMatrix.save function.

xgb.DMatrix.save(dtrain, "dtrain.buffer")

## [1] TRUE

# to load it in, simply call xgb.DMatrix
dtrain2 <- xgb.DMatrix("dtrain.buffer")

## [11:41:01] 6513x126 matrix with 143286 entries loaded from dtrain.buffer

bst <- xgb.train(data=dtrain2, max.depth=2, eta=1, nthread = 2, nrounds=2,␣
→˓watchlist=watchlist, objective = "binary:logistic")

## [0] train-error:0.046522 test-error:0.042831
## [1] train-error:0.022263 test-error:0.021726

Information extraction

Information can be extracted from an xgb.DMatrix using getinfo function. Hereafter we will extract label data.

label = getinfo(dtest, "label")
pred <- predict(bst, dtest)
err <- as.numeric(sum(as.integer(pred > 0.5) != label))/length(label)
print(paste("test-error=", err))

## [1] "test-error= 0.0217256362507759"

View feature importance/influence from the learnt model

Feature importance is similar to R gbm package’s relative influence (rel.inf).

importance_matrix <- xgb.importance(model = bst)
print(importance_matrix)
xgb.plot.importance(importance_matrix = importance_matrix)
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View the trees from a model

You can dump the tree you learned using xgb.dump into a text file.

xgb.dump(bst, with_stats = TRUE)

## [1] "booster[0]"
## [2] "0:[f28<-1.00136e-05] yes=1,no=2,missing=1,gain=4000.53,cover=1628.25"
## [3] "1:[f55<-1.00136e-05] yes=3,no=4,missing=3,gain=1158.21,cover=924.5"
## [4] "3:leaf=1.71218,cover=812"
## [5] "4:leaf=-1.70044,cover=112.5"
## [6] "2:[f108<-1.00136e-05] yes=5,no=6,missing=5,gain=198.174,cover=703.75"
## [7] "5:leaf=-1.94071,cover=690.5"
## [8] "6:leaf=1.85965,cover=13.25"
## [9] "booster[1]"
## [10] "0:[f59<-1.00136e-05] yes=1,no=2,missing=1,gain=832.545,cover=788.852"
## [11] "1:[f28<-1.00136e-05] yes=3,no=4,missing=3,gain=569.725,cover=768.39"
## [12] "3:leaf=0.784718,cover=458.937"
## [13] "4:leaf=-0.96853,cover=309.453"
## [14] "2:leaf=-6.23624,cover=20.4624"

You can plot the trees from your model using ```xgb.plot.tree``

xgb.plot.tree(model = bst)

if you provide a path to fname parameter you can save the trees to your hard drive.

Save and load models

Maybe your dataset is big, and it takes time to train a model on it? May be you are not a big fan of losing time in
redoing the same task again and again? In these very rare cases, you will want to save your model and load it when
required.

Helpfully for you, XGBoost implements such functions.

# save model to binary local file
xgb.save(bst, "xgboost.model")

## [1] TRUE

xgb.save function should return TRUE if everything goes well and crashes otherwise.

An interesting test to see how identical our saved model is to the original one would be to compare the two predictions.

# load binary model to R
bst2 <- xgb.load("xgboost.model")
pred2 <- predict(bst2, test$data)

# And now the test
print(paste("sum(abs(pred2-pred))=", sum(abs(pred2-pred))))

## [1] "sum(abs(pred2-pred))= 0"

result is 0? We are good!
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In some very specific cases, like when you want to pilot XGBoost from caret package, you will want to save the
model as a R binary vector. See below how to do it.

# save model to R's raw vector
rawVec <- xgb.save.raw(bst)

# print class
print(class(rawVec))

## [1] "raw"

# load binary model to R
bst3 <- xgb.load(rawVec)
pred3 <- predict(bst3, test$data)

# pred3 should be identical to pred
print(paste("sum(abs(pred3-pred))=", sum(abs(pred3-pred))))

## [1] "sum(abs(pred3-pred))= 0"

Again 0? It seems that XGBoost works pretty well!

References

Understand your dataset with XGBoost

Introduction

The purpose of this Vignette is to show you how to use XGBoost to discover and understand your own dataset better.

This Vignette is not about predicting anything (see XGBoost presentation). We will explain how to use XGBoost to
highlight the link between the features of your data and the outcome.

Package loading:

require(xgboost)
require(Matrix)
require(data.table)
if (!require('vcd')) install.packages('vcd')

VCD package is used for one of its embedded dataset only.

Preparation of the dataset

Numeric VS categorical variables

XGBoost manages only numeric vectors.

What to do when you have categorical data?

A categorical variable has a fixed number of different values. For instance, if a variable called Colour can have only
one of these three values, red, blue or green, then Colour is a categorical variable.
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In R, a categorical variable is called factor.

Type ?factor in the console for more information.

To answer the question above we will convert categorical variables to numeric one.

Conversion from categorical to numeric variables

Looking at the raw data

In this Vignette we will see how to transform a dense data.frame (dense = few zeroes in the matrix) with categorical
variables to a very sparse matrix (sparse = lots of zero in the matrix) of numeric features.

The method we are going to see is usually called one-hot encoding.

The first step is to load Arthritis dataset in memory and wrap it with data.table package.

data(Arthritis)
df <- data.table(Arthritis, keep.rownames = FALSE)

data.table is 100% compliant with R data.frame but its syntax is more consistent and its performance
for large dataset is best in class (dplyr from R and Pandas from Python included). Some parts of
XGBoost R package use data.table.

The first thing we want to do is to have a look to the first lines of the data.table:

head(df)

## ID Treatment Sex Age Improved
## 1: 57 Treated Male 27 Some
## 2: 46 Treated Male 29 None
## 3: 77 Treated Male 30 None
## 4: 17 Treated Male 32 Marked
## 5: 36 Treated Male 46 Marked
## 6: 23 Treated Male 58 Marked

Now we will check the format of each column.

str(df)

## Classes 'data.table' and 'data.frame': 84 obs. of 5 variables:
## $ ID : int 57 46 77 17 36 23 75 39 33 55 ...
## $ Treatment: Factor w/ 2 levels "Placebo","Treated": 2 2 2 2 2 2 2 2 2 2 ...
## $ Sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 2 2 2 2 2 ...
## $ Age : int 27 29 30 32 46 58 59 59 63 63 ...
## $ Improved : Ord.factor w/ 3 levels "None"<"Some"<..: 2 1 1 3 3 3 1 3 1 1 ...
## - attr(*, ".internal.selfref")=<externalptr>

2 columns have factor type, one has ordinal type.

ordinal variable :

• can take a limited number of values (like factor) ;

• these values are ordered (unlike factor). Here these ordered values are: Marked > Some > None
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Creation of new features based on old ones

We will add some new categorical features to see if it helps.

Grouping per 10 years

For the first feature we create groups of age by rounding the real age.

Note that we transform it to factor so the algorithm treat these age groups as independent values.

Therefore, 20 is not closer to 30 than 60. To make it short, the distance between ages is lost in this transformation.

head(df[,AgeDiscret := as.factor(round(Age/10,0))])

## ID Treatment Sex Age Improved AgeDiscret
## 1: 57 Treated Male 27 Some 3
## 2: 46 Treated Male 29 None 3
## 3: 77 Treated Male 30 None 3
## 4: 17 Treated Male 32 Marked 3
## 5: 36 Treated Male 46 Marked 5
## 6: 23 Treated Male 58 Marked 6

Random split in two groups

Following is an even stronger simplification of the real age with an arbitrary split at 30 years old. I choose this value
based on nothing. We will see later if simplifying the information based on arbitrary values is a good strategy (you
may already have an idea of how well it will work. . . ).

head(df[,AgeCat:= as.factor(ifelse(Age > 30, "Old", "Young"))])

## ID Treatment Sex Age Improved AgeDiscret AgeCat
## 1: 57 Treated Male 27 Some 3 Young
## 2: 46 Treated Male 29 None 3 Young
## 3: 77 Treated Male 30 None 3 Young
## 4: 17 Treated Male 32 Marked 3 Old
## 5: 36 Treated Male 46 Marked 5 Old
## 6: 23 Treated Male 58 Marked 6 Old

Risks in adding correlated features

These new features are highly correlated to the Age feature because they are simple transformations of this feature.

For many machine learning algorithms, using correlated features is not a good idea. It may sometimes make prediction
less accurate, and most of the time make interpretation of the model almost impossible. GLM, for instance, assumes
that the features are uncorrelated.

Fortunately, decision tree algorithms (including boosted trees) are very robust to these features. Therefore we have
nothing to do to manage this situation.
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Cleaning data

We remove ID as there is nothing to learn from this feature (it would just add some noise).

df[,ID:=NULL]

We will list the different values for the column Treatment:

levels(df[,Treatment])

## [1] "Placebo" "Treated"

One-hot encoding

Next step, we will transform the categorical data to dummy variables. This is the one-hot encoding step.

The purpose is to transform each value of each categorical feature in a binary feature {0, 1}.

For example, the column Treatment will be replaced by two columns, Placebo, and Treated. Each of them will be
binary. Therefore, an observation which has the value Placebo in column Treatment before the transformation will
have after the transformation the value 1 in the new column Placebo and the value 0 in the new column Treated.
The column Treatment will disappear during the one-hot encoding.

Column Improved is excluded because it will be our label column, the one we want to predict.

sparse_matrix <- sparse.model.matrix(Improved~.-1, data = df)
head(sparse_matrix)

## 6 x 10 sparse Matrix of class "dgCMatrix"
##
## 1 . 1 1 27 1 . . . . 1
## 2 . 1 1 29 1 . . . . 1
## 3 . 1 1 30 1 . . . . 1
## 4 . 1 1 32 1 . . . . .
## 5 . 1 1 46 . . 1 . . .
## 6 . 1 1 58 . . . 1 . .

Formulae Improved~.-1 used above means transform all categorical features but column Improved to
binary values. The -1 is here to remove the first column which is full of 1 (this column is generated by
the conversion). For more information, you can type ?sparse.model.matrix in the console.

Create the output numeric vector (not as a sparse Matrix):

output_vector = df[,Improved] == "Marked"

1. set Y vector to 0;

2. set Y to 1 for rows where Improved == Marked is TRUE ;

3. return Y vector.
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Build the model

The code below is very usual. For more information, you can look at the documentation of xgboost function (or at
the vignette XGBoost presentation).

bst <- xgboost(data = sparse_matrix, label = output_vector, max.depth = 4,
eta = 1, nthread = 2, nrounds = 10,objective = "binary:logistic")

## [0] train-error:0.202381
## [1] train-error:0.166667
## [2] train-error:0.166667
## [3] train-error:0.166667
## [4] train-error:0.154762
## [5] train-error:0.154762
## [6] train-error:0.154762
## [7] train-error:0.166667
## [8] train-error:0.166667
## [9] train-error:0.166667

You can see some train-error: 0.XXXXX lines followed by a number. It decreases. Each line shows how well the
model explains your data. Lower is better.

A model which fits too well may overfit (meaning it copy/paste too much the past, and won’t be that good to predict
the future).

Here you can see the numbers decrease until line 7 and then increase.

It probably means we are overfitting. To fix that I should reduce the number of rounds to nrounds = 4.
I will let things like that because I don’t really care for the purpose of this example :-)

Feature importance

Measure feature importance

Build the feature importance data.table

In the code below, sparse_matrix@Dimnames[[2]] represents the column names of the sparse matrix. These names
are the original values of the features (remember, each binary column == one value of one categorical feature).

importance <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst)
head(importance)

## Feature Gain Cover Frequency
## 1: Age 0.622031651 0.67251706 0.67241379
## 2: TreatmentPlacebo 0.285750607 0.11916656 0.10344828
## 3: SexMale 0.048744054 0.04522027 0.08620690
## 4: AgeDiscret6 0.016604647 0.04784637 0.05172414
## 5: AgeDiscret3 0.016373791 0.08028939 0.05172414
## 6: AgeDiscret4 0.009270558 0.02858801 0.01724138

The column Gain provide the information we are looking for.

As you can see, features are classified by Gain.
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Gain is the improvement in accuracy brought by a feature to the branches it is on. The idea is that before adding a new
split on a feature X to the branch there was some wrongly classified elements, after adding the split on this feature,
there are two new branches, and each of these branch is more accurate (one branch saying if your observation is on this
branch then it should be classified as 1, and the other branch saying the exact opposite).

Cover measures the relative quantity of observations concerned by a feature.

Frequency is a simpler way to measure the Gain. It just counts the number of times a feature is used in all generated
trees. You should not use it (unless you know why you want to use it).

Improvement in the interpretability of feature importance data.table

We can go deeper in the analysis of the model. In the data.table above, we have discovered which features counts to
predict if the illness will go or not. But we don’t yet know the role of these features. For instance, one of the question
we may want to answer would be: does receiving a placebo treatment helps to recover from the illness?

One simple solution is to count the co-occurrences of a feature and a class of the classification.

For that purpose we will execute the same function as above but using two more parameters, data and label.

importanceRaw <- xgb.importance(feature_names = sparse_matrix@Dimnames[[2]], model = bst,
→˓ data = sparse_matrix, label = output_vector)

# Cleaning for better display
importanceClean <- importanceRaw[,`:=`(Cover=NULL, Frequency=NULL)]

head(importanceClean)

## Feature Split Gain RealCover RealCover %
## 1: TreatmentPlacebo -1.00136e-05 0.28575061 7 0.2500000
## 2: Age 61.5 0.16374034 12 0.4285714
## 3: Age 39 0.08705750 8 0.2857143
## 4: Age 57.5 0.06947553 11 0.3928571
## 5: SexMale -1.00136e-05 0.04874405 4 0.1428571
## 6: Age 53.5 0.04620627 10 0.3571429

In the table above we have removed two not needed columns and select only the first lines.

First thing you notice is the new column Split. It is the split applied to the feature on a branch of one of the tree.
Each split is present, therefore a feature can appear several times in this table. Here we can see the feature Age is used
several times with different splits.

How the split is applied to count the co-occurrences? It is always <. For instance, in the second line, we measure the
number of persons under 61.5 years with the illness gone after the treatment.

The two other new columns are RealCover and RealCover %. In the first column it measures the number of obser-
vations in the dataset where the split is respected and the label marked as 1. The second column is the percentage of
the whole population that RealCover represents.

Therefore, according to our findings, getting a placebo doesn’t seem to help but being younger than 61 years may help
(seems logic).

You may wonder how to interpret the < 1.00001 on the first line. Basically, in a sparse Matrix, there
is no 0, therefore, looking for one hot-encoded categorical observations validating the rule < 1.00001 is
like just looking for 1 for this feature.
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Plotting the feature importance

All these things are nice, but it would be even better to plot the results.

xgb.plot.importance(importance_matrix = importanceRaw)

## Error in xgb.plot.importance(importance_matrix = importanceRaw): Importance matrix is␣
→˓not correct (column names issue)

Feature have automatically been divided in 2 clusters: the interesting features. . . and the others.

Depending of the dataset and the learning parameters you may have more than two clusters. Default value
is to limit them to 10, but you can increase this limit. Look at the function documentation for more
information.

According to the plot above, the most important features in this dataset to predict if the treatment will work are :

• the Age ;

• having received a placebo or not ;

• the sex is third but already included in the not interesting features group ;

• then we see our generated features (AgeDiscret). We can see that their contribution is very low.

Do these results make sense?

Let’s check some Chi2 between each of these features and the label.

Higher Chi2 means better correlation.

c2 <- chisq.test(df$Age, output_vector)
print(c2)

##
## Pearson's Chi-squared test
##
## data: df$Age and output_vector
## X-squared = 35.475, df = 35, p-value = 0.4458

Pearson correlation between Age and illness disappearing is 35.48.

c2 <- chisq.test(df$AgeDiscret, output_vector)
print(c2)

##
## Pearson's Chi-squared test
##
## data: df$AgeDiscret and output_vector
## X-squared = 8.2554, df = 5, p-value = 0.1427

Our first simplification of Age gives a Pearson correlation is 8.26.

c2 <- chisq.test(df$AgeCat, output_vector)
print(c2)
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##
## Pearson's Chi-squared test with Yates' continuity correction
##
## data: df$AgeCat and output_vector
## X-squared = 2.3571, df = 1, p-value = 0.1247

The perfectly random split I did between young and old at 30 years old have a low correlation of 2.36. It’s a result we
may expect as may be in my mind > 30 years is being old (I am 32 and starting feeling old, this may explain that), but
for the illness we are studying, the age to be vulnerable is not the same.

Morality: don’t let your gut lower the quality of your model.

In data science expression, there is the word science :-)

Conclusion

As you can see, in general destroying information by simplifying it won’t improve your model. Chi2 just demonstrates
that.

But in more complex cases, creating a new feature based on existing one which makes link with the outcome more
obvious may help the algorithm and improve the model.

The case studied here is not enough complex to show that. Check Kaggle website for some challenging datasets.
However it’s almost always worse when you add some arbitrary rules.

Moreover, you can notice that even if we have added some not useful new features highly correlated with other features,
the boosting tree algorithm have been able to choose the best one, which in this case is the Age.

Linear models may not be that smart in this scenario.

Special Note: What about Random Forests™?

As you may know, Random Forests algorithm is cousin with boosting and both are part of the ensemble learning family.

Both train several decision trees for one dataset. The main difference is that in Random Forests, trees are independent
and in boosting, the tree N+1 focus its learning on the loss (<=> what has not been well modeled by the tree N).

This difference have an impact on a corner case in feature importance analysis: the correlated features.

Imagine two features perfectly correlated, feature A and feature B. For one specific tree, if the algorithm needs one of
them, it will choose randomly (true in both boosting and Random Forests).

However, in Random Forests this random choice will be done for each tree, because each tree is independent from the
others. Therefore, approximatively, depending of your parameters, 50% of the trees will choose feature A and the other
50% will choose feature B. So the importance of the information contained in A and B (which is the same, because they
are perfectly correlated) is diluted in A and B. So you won’t easily know this information is important to predict what
you want to predict! It is even worse when you have 10 correlated features. . .

In boosting, when a specific link between feature and outcome have been learned by the algorithm, it will try to not
refocus on it (in theory it is what happens, reality is not always that simple). Therefore, all the importance will be on
feature A or on feature B (but not both). You will know that one feature have an important role in the link between the
observations and the label. It is still up to you to search for the correlated features to the one detected as important if
you need to know all of them.

If you want to try Random Forests algorithm, you can tweak XGBoost parameters!

Warning: this is still an experimental parameter.
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For instance, to compute a model with 1000 trees, with a 0.5 factor on sampling rows and columns:

data(agaricus.train, package='xgboost')
data(agaricus.test, package='xgboost')
train <- agaricus.train
test <- agaricus.test

#Random Forest - 1000 trees
bst <- xgboost(data = train$data, label = train$label, max.depth = 4, num_parallel_tree␣
→˓= 1000, subsample = 0.5, colsample_bytree =0.5, nrounds = 1, objective =
→˓"binary:logistic")

## [0] train-error:0.002150

#Boosting - 3 rounds
bst <- xgboost(data = train$data, label = train$label, max.depth = 4, nrounds = 3,␣
→˓objective = "binary:logistic")

## [0] train-error:0.006142
## [1] train-error:0.006756
## [2] train-error:0.001228

Note that the parameter round is set to 1.

Random Forests is a trademark of Leo Breiman and Adele Cutler and is licensed exclusively to Salford
Systems for the commercial release of the software.

1.12 XGBoost JVM Package

You have found the XGBoost JVM Package!

1.12.1 Installation

Checkout the Installation Guide for how to install jvm package, or Building from Source on how to build it form source.

1.12.2 Contents

Getting Started with XGBoost4J

This tutorial introduces Java API for XGBoost.
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Data Interface

Like the XGBoost python module, XGBoost4J uses DMatrix to handle data. LIBSVM txt format file, sparse matrix in
CSR/CSC format, and dense matrix are supported.

• The first step is to import DMatrix:

import ml.dmlc.xgboost4j.java.DMatrix;

• Use DMatrix constructor to load data from a libsvm text format file:

DMatrix dmat = new DMatrix("train.svm.txt");

• Pass arrays to DMatrix constructor to load from sparse matrix.

Suppose we have a sparse matrix

1 0 2 0
4 0 0 3
3 1 2 0

We can express the sparse matrix in Compressed Sparse Row (CSR) format:

long[] rowHeaders = new long[] {0,2,4,7};
float[] data = new float[] {1f,2f,4f,3f,3f,1f,2f};
int[] colIndex = new int[] {0,2,0,3,0,1,2};
int numColumn = 4;
DMatrix dmat = new DMatrix(rowHeaders, colIndex, data, DMatrix.SparseType.CSR,␣
→˓numColumn);

. . . or in Compressed Sparse Column (CSC) format:

long[] colHeaders = new long[] {0,3,4,6,7};
float[] data = new float[] {1f,4f,3f,1f,2f,2f,3f};
int[] rowIndex = new int[] {0,1,2,2,0,2,1};
int numRow = 3;
DMatrix dmat = new DMatrix(colHeaders, rowIndex, data, DMatrix.SparseType.CSC,␣
→˓numRow);

• You may also load your data from a dense matrix. Let’s assume we have a matrix of form

1 2
3 4
5 6

Using row-major layout, we specify the dense matrix as follows:

float[] data = new float[] {1f,2f,3f,4f,5f,6f};
int nrow = 3;
int ncol = 2;
float missing = 0.0f;
DMatrix dmat = new DMatrix(data, nrow, ncol, missing);

• To set weight:
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float[] weights = new float[] {1f,2f,1f};
dmat.setWeight(weights);

Setting Parameters

To set parameters, parameters are specified as a Map:

Map<String, Object> params = new HashMap<String, Object>() {
{
put("eta", 1.0);
put("max_depth", 2);
put("objective", "binary:logistic");
put("eval_metric", "logloss");

}
};

Training Model

With parameters and data, you are able to train a booster model.

• Import Booster and XGBoost:

import ml.dmlc.xgboost4j.java.Booster;
import ml.dmlc.xgboost4j.java.XGBoost;

• Training

DMatrix trainMat = new DMatrix("train.svm.txt");
DMatrix validMat = new DMatrix("valid.svm.txt");
// Specify a watch list to see model accuracy on data sets
Map<String, DMatrix> watches = new HashMap<String, DMatrix>() {
{
put("train", trainMat);
put("test", testMat);

}
};
int nround = 2;
Booster booster = XGBoost.train(trainMat, params, nround, watches, null, null);

• Saving model

After training, you can save model and dump it out.

booster.saveModel("model.bin");

• Generaing model dump with feature map

// dump without feature map
String[] model_dump = booster.getModelDump(null, false);
// dump with feature map
String[] model_dump_with_feature_map = booster.getModelDump("featureMap.txt",␣
→˓false);
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• Load a model

Booster booster = XGBoost.loadModel("model.bin");

Prediction

After training and loading a model, you can use it to make prediction for other data. The result will be a two-dimension
float array (nsample, nclass); for predictLeaf(), the result would be of shape (nsample, nclass*ntrees).

DMatrix dtest = new DMatrix("test.svm.txt");
// predict
float[][] predicts = booster.predict(dtest);
// predict leaf
float[][] leafPredicts = booster.predictLeaf(dtest, 0);

XGBoost4J-Spark Tutorial (version 0.9+)

XGBoost4J-Spark is a project aiming to seamlessly integrate XGBoost and Apache Spark by fitting XGBoost to
Apache Spark’s MLLIB framework. With the integration, user can not only uses the high-performant algorithm im-
plementation of XGBoost, but also leverages the powerful data processing engine of Spark for:

• Feature Engineering: feature extraction, transformation, dimensionality reduction, and selection, etc.

• Pipelines: constructing, evaluating, and tuning ML Pipelines

• Persistence: persist and load machine learning models and even whole Pipelines

This tutorial is to cover the end-to-end process to build a machine learning pipeline with XGBoost4J-Spark. We will
discuss

• Using Spark to preprocess data to fit to XGBoost/XGBoost4J-Spark’s data interface

• Training a XGBoost model with XGBoost4J-Spark

• Serving XGBoost model (prediction) with Spark

• Building a Machine Learning Pipeline with XGBoost4J-Spark

• Running XGBoost4J-Spark in Production

• Build an ML Application with XGBoost4J-Spark

– Refer to XGBoost4J-Spark Dependency

– Data Preparation

∗ Read Dataset with Spark’s Built-In Reader

∗ Transform Raw Iris Dataset

· Dealing with missing values

– Training

∗ Early Stopping

∗ Training with Evaluation Sets

– Prediction
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∗ Batch Prediction

∗ Single instance prediction

– Model Persistence

∗ Model and pipeline persistence

∗ Interact with Other Bindings of XGBoost

• Building a ML Pipeline with XGBoost4J-Spark

– Basic ML Pipeline

– Pipeline with Hyper-parameter Tunning

• Run XGBoost4J-Spark in Production

– Parallel/Distributed Training

– Gang Scheduling

– Checkpoint During Training

Build an ML Application with XGBoost4J-Spark

Refer to XGBoost4J-Spark Dependency

Before we go into the tour of how to use XGBoost4J-Spark, you should first consult Installation from Maven repository
in order to add XGBoost4J-Spark as a dependency for your project. We provide both stable releases and snapshots.

Note: XGBoost4J-Spark requires Apache Spark 2.4+

XGBoost4J-Spark now requires Apache Spark 2.4+. Latest versions of XGBoost4J-Spark uses facilities of
org.apache.spark.ml.param.shared extensively to provide for a tight integration with Spark MLLIB framework, and
these facilities are not fully available on earlier versions of Spark.

Also, make sure to install Spark directly from Apache website. Upstream XGBoost is not guaranteed to work
with third-party distributions of Spark, such as Cloudera Spark. Consult appropriate third parties to obtain their
distribution of XGBoost.

Installation from maven repo

Note: Use of Python in XGBoost4J-Spark

By default, we use the tracker in Python package to drive the training with XGBoost4J-Spark. It requires Python 3.6+.
We also have an experimental Scala version of tracker which can be enabled by passing the parameter tracker_conf
as scala.
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Data Preparation

As aforementioned, XGBoost4J-Spark seamlessly integrates Spark and XGBoost. The integration enables users to
apply various types of transformation over the training/test datasets with the convenient and powerful data processing
framework, Spark.

In this section, we use Iris dataset as an example to showcase how we use Spark to transform raw dataset and make it
fit to the data interface of XGBoost.

Iris dataset is shipped in CSV format. Each instance contains 4 features, “sepal length”, “sepal width”, “petal length”
and “petal width”. In addition, it contains the “class” column, which is essentially the label with three possible values:
“Iris Setosa”, “Iris Versicolour” and “Iris Virginica”.

Read Dataset with Spark’s Built-In Reader

The first thing in data transformation is to load the dataset as Spark’s structured data abstraction, DataFrame.

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}

val spark = SparkSession.builder().getOrCreate()
val schema = new StructType(Array(
StructField("sepal length", DoubleType, true),
StructField("sepal width", DoubleType, true),
StructField("petal length", DoubleType, true),
StructField("petal width", DoubleType, true),
StructField("class", StringType, true)))

val rawInput = spark.read.schema(schema).csv("input_path")

At the first line, we create a instance of SparkSession which is the entry of any Spark program working with DataFrame.
The schema variable defines the schema of DataFrame wrapping Iris data. With this explicitly set schema, we can define
the columns’ name as well as their types; otherwise the column name would be the default ones derived by Spark, such
as _col0, etc. Finally, we can use Spark’s built-in csv reader to load Iris csv file as a DataFrame named rawInput.

Spark also contains many built-in readers for other format. The latest version of Spark supports CSV, JSON, Parquet,
and LIBSVM.

Transform Raw Iris Dataset

To make Iris dataset be recognizable to XGBoost, we need to

1. Transform String-typed label, i.e. “class”, to Double-typed label.

2. Assemble the feature columns as a vector to fit to the data interface of Spark ML framework.

To convert String-typed label to Double, we can use Spark’s built-in feature transformer StringIndexer.

import org.apache.spark.ml.feature.StringIndexer
val stringIndexer = new StringIndexer().
setInputCol("class").
setOutputCol("classIndex").
fit(rawInput)

val labelTransformed = stringIndexer.transform(rawInput).drop("class")

With a newly created StringIndexer instance:
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1. we set input column, i.e. the column containing String-typed label

2. we set output column, i.e. the column to contain the Double-typed label.

3. Then we fit StringIndex with our input DataFrame rawInput, so that Spark internals can get information like
total number of distinct values, etc.

Now we have a StringIndexer which is ready to be applied to our input DataFrame. To execute the transformation
logic of StringIndexer, we transform the input DataFrame rawInput and to keep a concise DataFrame, we drop the
column “class” and only keeps the feature columns and the transformed Double-typed label column (in the last line of
the above code snippet).

The fit and transform are two key operations in MLLIB. Basically, fit produces a “transformer”, e.g. StringIn-
dexer, and each transformer applies transform method on DataFrame to add new column(s) containing transformed
features/labels or prediction results, etc. To understand more about fit and transform, You can find more details in
here.

Similarly, we can use another transformer, VectorAssembler, to assemble feature columns “sepal length”, “sepal width”,
“petal length” and “petal width” as a vector.

import org.apache.spark.ml.feature.VectorAssembler
val vectorAssembler = new VectorAssembler().
setInputCols(Array("sepal length", "sepal width", "petal length", "petal width")).
setOutputCol("features")

val xgbInput = vectorAssembler.transform(labelTransformed).select("features", "classIndex
→˓")

Now, we have a DataFrame containing only two columns, “features” which contains vector-represented “sepal length”,
“sepal width”, “petal length” and “petal width” and “classIndex” which has Double-typed labels. A DataFrame like this
(containing vector-represented features and numeric labels) can be fed to XGBoost4J-Spark’s training engine directly.

Note: There is no need to assemble feature columns from version 1.6.1+. Instead, users can specify an array of feature
column names by setFeaturesCol(value: Array[String]) and XGBoost4j-Spark will do it.

Dealing with missing values

XGBoost supports missing values by default (as desribed here). If given a SparseVector, XGBoost will treat any values
absent from the SparseVector as missing. You are also able to specify to XGBoost to treat a specific value in your
Dataset as if it was a missing value. By default XGBoost will treat NaN as the value representing missing.

Example of setting a missing value (e.g. -999) to the “missing” parameter in XGBoostClassifier:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map("eta" -> 0.1f,

"missing" -> -999,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

Note: Missing values with Spark’s VectorAssembler
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If given a Dataset with enough features having a value of 0 Spark’s VectorAssembler transformer class will return a
SparseVector where the absent values are meant to indicate a value of 0. This conflicts with XGBoost’s default to treat
values absent from the SparseVector as missing. The model would effectively be treating 0 as missing but not declaring
that to be so which can lead to confusion when using the trained model on other platforms. To avoid this, XGBoost
will raise an exception if it receives a SparseVector and the “missing” parameter has not been explicitly set to 0. To
workaround this issue the user has three options:

1. Explicitly convert the Vector returned from VectorAssembler to a DenseVector to return the zeros to the dataset. If
doing this with missing values encoded as NaN, you will want to set setHandleInvalid = "keep" on VectorAssem-
bler in order to keep the NaN values in the dataset. You would then set the “missing” parameter to whatever you want
to be treated as missing. However this may cause a large amount of memory use if your dataset is very sparse. For
example:

val assembler = new VectorAssembler().setInputCols(feature_names.toArray).setOutputCol(“features”).setHandleInvalid(“keep”)

// conversion to dense vector using Array()

val featurePipeline = new Pipeline().setStages(Array(assembler)) val featureModel = featurePipeline.fit(df_training)
val featureDf = featureModel.transform(df_training)

val xgbParam = Map(“eta” -> 0.1f,
“max_depth” -> 2, “objective” -> “multi:softprob”, “num_class” -> 3, “num_round” -> 100, “num_workers” ->
2, “allow_non_zero_for_missing” -> “true”, “missing” -> -999)

val xgb = new XGBoostClassifier(xgbParam) val xgbclassifier = xgb.fit(featureDf)

2. Before calling VectorAssembler you can transform the values you want to represent missing into an irregular value
that is not 0, NaN, or Null and set the “missing” parameter to 0. The irregular value should ideally be chosen to be
outside the range of values that your features have.

3. Do not use the VectorAssembler class and instead use a custom way of constructing a SparseVector that allows for
specifying sparsity to indicate a non-zero value. You can then set the “missing” parameter to whatever sparsity indicates
in your Dataset. If this approach is taken you can pass the parameter "allow_non_zero_for_missing_value" ->
true to bypass XGBoost’s assertion that “missing” must be zero when given a SparseVector.

Option 1 is recommended if memory constraints are not an issue. Option 3 requires more work to get set up but is
guaranteed to give you correct results while option 2 will be quicker to set up but may be difficult to find a good
irregular value that does not conflict with your feature values.

Note: Using a non-default missing value when using other bindings of XGBoost.

When XGBoost is saved in native format only the booster itself is saved, the value of the missing parameter is not saved
alongside the model. Thus, if a non-default missing parameter is used to train the model in Spark the user should take
care to use the same missing parameter when using the saved model in another binding.
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Training

XGBoost supports both regression and classification. While we use Iris dataset in this tutorial to show how we use
XGBoost/XGBoost4J-Spark to resolve a multi-classes classification problem, the usage in Regression is very similar
to classification.

To train a XGBoost model for classification, we need to claim a XGBoostClassifier first:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map("eta" -> 0.1f,

"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

The available parameters for training a XGBoost model can be found in here. In XGBoost4J-Spark, we support not
only the default set of parameters but also the camel-case variant of these parameters to keep consistent with Spark’s
MLLIB parameters.

Specifically, each parameter in this page has its equivalent form in XGBoost4J-Spark with camel case. For example,
to set max_depth for each tree, you can pass parameter just like what we did in the above code snippet (as max_depth
wrapped in a Map), or you can do it through setters in XGBoostClassifer:

val xgbClassifier = new XGBoostClassifier().
setFeaturesCol("features").
setLabelCol("classIndex")

xgbClassifier.setMaxDepth(2)

After we set XGBoostClassifier parameters and feature/label column, we can build a transformer, XGBoostClassifi-
cationModel by fitting XGBoostClassifier with the input DataFrame. This fit operation is essentially the training
process and the generated model can then be used in prediction.

val xgbClassificationModel = xgbClassifier.fit(xgbInput)

Early Stopping

Early stopping is a feature to prevent the unnecessary training iterations. By specifying
num_early_stopping_rounds or directly call setNumEarlyStoppingRounds over a XGBoostClassifier or
XGBoostRegressor, we can define number of rounds if the evaluation metric going away from the best iteration and
early stop training iterations.

When it comes to custom eval metrics, in additional to num_early_stopping_rounds, you also need to define
maximize_evaluation_metrics or call setMaximizeEvaluationMetrics to specify whether you want to max-
imize or minimize the metrics in training. For built-in eval metrics, XGBoost4J-Spark will automatically select the
direction.

For example, we need to maximize the evaluation metrics (set maximize_evaluation_metrics with true), and set
num_early_stopping_rounds with 5. The evaluation metric of 10th iteration is the maximum one until now. In the
following iterations, if there is no evaluation metric greater than the 10th iteration’s (best one), the traning would be
early stopped at 15th iteration.
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Training with Evaluation Sets

You can also monitor the performance of the model during training with multiple evaluation datasets. By specifying
eval_sets or call setEvalSets over a XGBoostClassifier or XGBoostRegressor, you can pass in multiple evaluation
datasets typed as a Map from String to DataFrame.

Prediction

XGBoost4j-Spark supports two ways for model serving: batch prediction and single instance prediction.

Batch Prediction

When we get a model, either XGBoostClassificationModel or XGBoostRegressionModel, it takes a DataFrame, read
the column containing feature vectors, predict for each feature vector, and output a new DataFrame with the following
columns by default:

• XGBoostClassificationModel will output margins (rawPredictionCol), probabilities(probabilityCol) and
the eventual prediction labels (predictionCol) for each possible label.

• XGBoostRegressionModel will output prediction label(predictionCol).

Batch prediction expects the user to pass the testset in the form of a DataFrame. XGBoost4J-Spark starts a XGBoost
worker for each partition of DataFrame for parallel prediction and generates prediction results for the whole DataFrame
in a batch.

val xgbClassificationModel = xgbClassifier.fit(xgbInput)
val results = xgbClassificationModel.transform(testSet)

With the above code snippet, we get a result DataFrame, result containing margin, probability for each class and the
prediction for each instance

+-----------------+----------+--------------------+--------------------+----------+
| features|classIndex| rawPrediction| probability|prediction|
+-----------------+----------+--------------------+--------------------+----------+
|[5.1,3.5,1.4,0.2]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[4.9,3.0,1.4,0.2]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[4.7,3.2,1.3,0.2]| 0.0|[3.45569849014282...|[0.99643349647521...| 0.0|
|[4.6,3.1,1.5,0.2]| 0.0|[3.45569849014282...|[0.99636095762252...| 0.0|
|[5.0,3.6,1.4,0.2]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[5.4,3.9,1.7,0.4]| 0.0|[3.45569849014282...|[0.99428516626358...| 0.0|
|[4.6,3.4,1.4,0.3]| 0.0|[3.45569849014282...|[0.99643349647521...| 0.0|
|[5.0,3.4,1.5,0.2]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[4.4,2.9,1.4,0.2]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[4.9,3.1,1.5,0.1]| 0.0|[3.45569849014282...|[0.99636095762252...| 0.0|
|[5.4,3.7,1.5,0.2]| 0.0|[3.45569849014282...|[0.99428516626358...| 0.0|
|[4.8,3.4,1.6,0.2]| 0.0|[3.45569849014282...|[0.99643349647521...| 0.0|
|[4.8,3.0,1.4,0.1]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[4.3,3.0,1.1,0.1]| 0.0|[3.45569849014282...|[0.99618089199066...| 0.0|
|[5.8,4.0,1.2,0.2]| 0.0|[3.45569849014282...|[0.97809928655624...| 0.0|
|[5.7,4.4,1.5,0.4]| 0.0|[3.45569849014282...|[0.97809928655624...| 0.0|
|[5.4,3.9,1.3,0.4]| 0.0|[3.45569849014282...|[0.99428516626358...| 0.0|
|[5.1,3.5,1.4,0.3]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
|[5.7,3.8,1.7,0.3]| 0.0|[3.45569849014282...|[0.97809928655624...| 0.0|

(continues on next page)
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(continued from previous page)

|[5.1,3.8,1.5,0.3]| 0.0|[3.45569849014282...|[0.99579632282257...| 0.0|
+-----------------+----------+--------------------+--------------------+----------+

Single instance prediction

XGBoostClassificationModel or XGBoostRegressionModel support make prediction on single instance as well. It
accepts a single Vector as feature, and output the prediction label.

However, the overhead of single-instance prediction is high due to the internal overhead of XGBoost, use it carefully!

val features = xgbInput.head().getAs[Vector]("features")
val result = xgbClassificationModel.predict(features)

Model Persistence

Model and pipeline persistence

A data scientist produces an ML model and hands it over to an engineering team for deployment in a production
environment. Reversely, a trained model may be used by data scientists, for example as a baseline, across the process
of data exploration. So it’s important to support model persistence to make the models available across usage scenarios
and programming languages.

XGBoost4j-Spark supports saving and loading XGBoostClassifier/XGBoostClassificationModel and XGBoostRegres-
sor/XGBoostRegressionModel. It also supports saving and loading a ML pipeline which includes these estimators and
models.

We can save the XGBoostClassificationModel to file system:

val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().save(xgbClassificationModelPath)

and then loading the model in another session:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel

val xgbClassificationModel2 = XGBoostClassificationModel.load(xgbClassificationModelPath)
xgbClassificationModel2.transform(xgbInput)

Note: Besides dumping the model to raw format, users are able to dump the model to be json or ubj format from
version 1.7.0+.

val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().option("format", "json").
→˓save(xgbClassificationModelPath)

With regards to ML pipeline save and load, please refer the next section.
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Interact with Other Bindings of XGBoost

After we train a model with XGBoost4j-Spark on massive dataset, sometimes we want to do model serving in single
machine or integrate it with other single node libraries for further processing.

After saving the model, we can load this model with single node Python XGBoost directly from version 1.7.0+.

val xgbClassificationModelPath = "/tmp/xgbClassificationModel"
xgbClassificationModel.write.overwrite().save(xgbClassificationModelPath)

import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
bst.load_model("/tmp/xgbClassificationModel/data/XGBoostClassificationModel")

Before version 1.7.0, XGBoost4j-Spark needs to export model to local manually by:

val nativeModelPath = "/tmp/nativeModel"
xgbClassificationModel.nativeBooster.saveModel(nativeModelPath)

Then we can load this model with single node Python XGBoost:

import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
bst.load_model(nativeModelPath)

Note: Using HDFS and S3 for exporting the models with nativeBooster.saveModel()

When interacting with other language bindings, XGBoost also supports saving-models-to and loading-models-from
file systems other than the local one. You can use HDFS and S3 by prefixing the path with hdfs:// and s3://
respectively. However, for this capability, you must do one of the following:

1. Build XGBoost4J-Spark with the steps described in here, but turning USE_HDFS (or USE_S3, etc. in the same
place) switch on. With this approach, you can reuse the above code example by replacing “nativeModelPath”
with a HDFS path.

• However, if you build with USE_HDFS, etc. you have to ensure that the involved shared object file, e.g.
libhdfs.so, is put in the LIBRARY_PATH of your cluster. To avoid the complicated cluster environment
configuration, choose the other option.

2. Use bindings of HDFS, S3, etc. to pass model files around. Here are the steps (taking HDFS as an example):

• Create a new file with

val outputStream = fs.create("hdfs_path")

where “fs” is an instance of org.apache.hadoop.fs.FileSystem class in Hadoop.

• Pass the returned OutputStream in the first step to nativeBooster.saveModel():

xgbClassificationModel.nativeBooster.saveModel(outputStream)

• Download file in other languages from HDFS and load with the pre-built (without the requirement of lib-
hdfs.so) version of XGBoost. (The function “download_from_hdfs” is a helper function to be implemented
by the user)
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import xgboost as xgb
bst = xgb.Booster({'nthread': 4})
local_path = download_from_hdfs("hdfs_path")
bst.load_model(local_path)

Note: Consistency issue between XGBoost4J-Spark and other bindings

There is a consistency issue between XGBoost4J-Spark and other language bindings of XGBoost.

When users use Spark to load training/test data in LIBSVM format with the following code snippet:

spark.read.format("libsvm").load("trainingset_libsvm")

Spark assumes that the dataset is using 1-based indexing (feature indices staring with 1). However, when you do
prediction with other bindings of XGBoost (e.g. Python API of XGBoost), XGBoost assumes that the dataset is using
0-based indexing (feature indices starting with 0) by default. It creates a pitfall for the users who train model with Spark
but predict with the dataset in the same format in other bindings of XGBoost. The solution is to transform the dataset
to 0-based indexing before you predict with, for example, Python API, or you append ?indexing_mode=1 to your file
path when loading with DMatirx. For example in Python:

xgb.DMatrix('test.libsvm?indexing_mode=1')

Building a ML Pipeline with XGBoost4J-Spark

Basic ML Pipeline

Spark ML pipeline can combine multiple algorithms or functions into a single pipeline. It covers from feature extraction,
transformation, selection to model training and prediction. XGBoost4j-Spark makes it feasible to embed XGBoost into
such a pipeline seamlessly. The following example shows how to build such a pipeline consisting of Spark MLlib feature
transformer and XGBoostClassifier estimator.

We still use Iris dataset and the rawInput DataFrame. First we need to split the dataset into training and test dataset.

val Array(training, test) = rawInput.randomSplit(Array(0.8, 0.2), 123)

The we build the ML pipeline which includes 4 stages:

• Assemble all features into a single vector column.

• From string label to indexed double label.

• Use XGBoostClassifier to train classification model.

• Convert indexed double label back to original string label.

We have shown the first three steps in the earlier sections, and the last step is finished with a new transformer Index-
ToString:

val labelConverter = new IndexToString()
.setInputCol("prediction")
.setOutputCol("realLabel")
.setLabels(stringIndexer.labels)
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We need to organize these steps as a Pipeline in Spark ML framework and evaluate the whole pipeline to get a
PipelineModel:

import org.apache.spark.ml.feature._
import org.apache.spark.ml.Pipeline

val pipeline = new Pipeline()
.setStages(Array(assembler, stringIndexer, booster, labelConverter))

val model = pipeline.fit(training)

After we get the PipelineModel, we can make prediction on the test dataset and evaluate the model accuracy.

import org.apache.spark.ml.evaluation.MulticlassClassificationEvaluator

val prediction = model.transform(test)
val evaluator = new MulticlassClassificationEvaluator()
val accuracy = evaluator.evaluate(prediction)

Pipeline with Hyper-parameter Tunning

The most critical operation to maximize the power of XGBoost is to select the optimal parameters for the model. Tuning
parameters manually is a tedious and labor-consuming process. With the latest version of XGBoost4J-Spark, we can
utilize the Spark model selecting tool to automate this process.

The following example shows the code snippet utilizing CrossValidation and MulticlassClassificationEvaluator to
search the optimal combination of two XGBoost parameters, max_depth and eta. (See XGBoost Parameters.) The
model producing the maximum accuracy defined by MulticlassClassificationEvaluator is selected and used to generate
the prediction for the test set.

import org.apache.spark.ml.tuning._
import org.apache.spark.ml.PipelineModel
import ml.dmlc.xgboost4j.scala.spark.XGBoostClassificationModel

val paramGrid = new ParamGridBuilder()
.addGrid(booster.maxDepth, Array(3, 8))
.addGrid(booster.eta, Array(0.2, 0.6))
.build()

val cv = new CrossValidator()
.setEstimator(pipeline)
.setEvaluator(evaluator)
.setEstimatorParamMaps(paramGrid)
.setNumFolds(3)

val cvModel = cv.fit(training)

val bestModel = cvModel.bestModel.asInstanceOf[PipelineModel].stages(2)
.asInstanceOf[XGBoostClassificationModel]

bestModel.extractParamMap()
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Run XGBoost4J-Spark in Production

XGBoost4J-Spark is one of the most important steps to bring XGBoost to production environment easier. In this
section, we introduce three key features to run XGBoost4J-Spark in production.

Parallel/Distributed Training

The massive size of training dataset is one of the most significant characteristics in production environment. To en-
sure that training in XGBoost scales with the data size, XGBoost4J-Spark bridges the distributed/parallel processing
framework of Spark and the parallel/distributed training mechanism of XGBoost.

In XGBoost4J-Spark, each XGBoost worker is wrapped by a Spark task and the training dataset in Spark’s memory
space is fed to XGBoost workers in a transparent approach to the user.

In the code snippet where we build XGBoostClassifier, we set parameter num_workers (or numWorkers). This pa-
rameter controls how many parallel workers we want to have when training a XGBoostClassificationModel.

Note: Regarding OpenMP optimization

By default, we allocate a core per each XGBoost worker. Therefore, the OpenMP optimization within each XGBoost
worker does not take effect and the parallelization of training is achieved by running multiple workers (i.e. Spark tasks)
at the same time.

If you do want OpenMP optimization, you have to

1. set nthread to a value larger than 1 when creating XGBoostClassifier/XGBoostRegressor

2. set spark.task.cpus in Spark to the same value as nthread

Gang Scheduling

XGBoost uses AllReduce. algorithm to synchronize the stats, e.g. histogram values, of each worker during training.
Therefore XGBoost4J-Spark requires that all of nthread * numWorkers cores should be available before the training
runs.

In the production environment where many users share the same cluster, it’s hard to guarantee that your XGBoost4J-
Spark application can get all requested resources for every run. By default, the communication layer in XGBoost will
block the whole application when it requires more resources to be available. This process usually brings unnecessary
resource waste as it keeps the ready resources and try to claim more. Additionally, this usually happens silently and
does not bring the attention of users.

XGBoost4J-Spark allows the user to setup a timeout threshold for claiming resources from the cluster. If the application
cannot get enough resources within this time period, the application would fail instead of wasting resources for hanging
long. To enable this feature, you can set with XGBoostClassifier/XGBoostRegressor:

xgbClassifier.setTimeoutRequestWorkers(60000L)

or pass in timeout_request_workers in xgbParamMap when building XGBoostClassifier:

val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,

(continues on next page)
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(continued from previous page)

"num_workers" -> 2,
"timeout_request_workers" -> 60000L)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

If XGBoost4J-Spark cannot get enough resources for running two XGBoost workers, the application would fail. Users
can have external mechanism to monitor the status of application and get notified for such case.

Checkpoint During Training

Transient failures are also commonly seen in production environment. To simplify the design of XGBoost, we stop
training if any of the distributed workers fail. However, if the training fails after having been through a long time, it
would be a great waste of resources.

We support creating checkpoint during training to facilitate more efficient recovery from failure. To enable this fea-
ture, you can set how many iterations we build each checkpoint with setCheckpointInterval and the location of
checkpoints with setCheckpointPath:

xgbClassifier.setCheckpointInterval(2)
xgbClassifier.setCheckpointPath("/checkpoint_path")

An equivalent way is to pass in parameters in XGBoostClassifier’s constructor:

val xgbParam = Map("eta" -> 0.1f,
"max_depth" -> 2,
"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"num_workers" -> 2,
"checkpoint_path" -> "/checkpoints_path",
"checkpoint_interval" -> 2)

val xgbClassifier = new XGBoostClassifier(xgbParam).
setFeaturesCol("features").
setLabelCol("classIndex")

If the training failed during these 100 rounds, the next run of training would start by reading the latest checkpoint file
in /checkpoints_path and start from the iteration when the checkpoint was built until to next failure or the specified
100 rounds.

XGBoost4J-Spark-GPU Tutorial (version 1.6.1+)

XGBoost4J-Spark-GPU is an open source library aiming to accelerate distributed XGBoost training on Apache Spark
cluster from end to end with GPUs by leveraging the RAPIDS Accelerator for Apache Spark product.

This tutorial will show you how to use XGBoost4J-Spark-GPU.

• Build an ML Application with XGBoost4J-Spark-GPU

– Add XGBoost to Your Project

– Data Preparation
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∗ Read Dataset with Spark’s Built-In Reader

∗ Transform Raw Iris Dataset

– Training

– Prediction

• Submit the application

Build an ML Application with XGBoost4J-Spark-GPU

Add XGBoost to Your Project

Before we go into the tour of how to use XGBoost4J-Spark-GPU, you should first consult Installation from Maven
repository in order to add XGBoost4J-Spark-GPU as a dependency for your project. We provide both stable releases
and snapshots.

Data Preparation

In this section, we use the Iris dataset as an example to showcase how we use Apache Spark to transform a raw dataset
and make it fit the data interface of XGBoost.

The Iris dataset is shipped in CSV format. Each instance contains 4 features, “sepal length”, “sepal width”, “petal
length” and “petal width”. In addition, it contains the “class” column, which is essentially the label with three possible
values: “Iris Setosa”, “Iris Versicolour” and “Iris Virginica”.

Read Dataset with Spark’s Built-In Reader

import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}

val spark = SparkSession.builder().getOrCreate()

val labelName = "class"
val schema = new StructType(Array(

StructField("sepal length", DoubleType, true),
StructField("sepal width", DoubleType, true),
StructField("petal length", DoubleType, true),
StructField("petal width", DoubleType, true),
StructField(labelName, StringType, true)))

val xgbInput = spark.read.option("header", "false")
.schema(schema)
.csv(dataPath)

In the first line, we create an instance of a SparkSession which is the entry point of any Spark application working with
DataFrames. The schema variable defines the schema of the DataFrame wrapping Iris data. With this explicitly set
schema, we can define the column names as well as their types; otherwise the column names would be the default ones
derived by Spark, such as _col0, etc. Finally, we can use Spark’s built-in CSV reader to load the Iris CSV file as a
DataFrame named xgbInput.
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Apache Spark also contains many built-in readers for other formats such as ORC, Parquet, Avro, JSON.

Transform Raw Iris Dataset

To make the Iris dataset recognizable to XGBoost, we need to encode the String-typed label, i.e. “class”, to the Double-
typed label.

One way to convert the String-typed label to Double is to use Spark’s built-in feature transformer StringIndexer. But this
feature is not accelerated in RAPIDS Accelerator, which means it will fall back to CPU. Instead, we use an alternative
way to achieve the same goal with the following code:

import org.apache.spark.sql.expressions.Window
import org.apache.spark.sql.functions._

val spec = Window.orderBy(labelName)
val Array(train, test) = xgbInput

.withColumn("tmpClassName", dense_rank().over(spec) - 1)

.drop(labelName)

.withColumnRenamed("tmpClassName", labelName)

.randomSplit(Array(0.7, 0.3), seed = 1)

train.show(5)

+------------+-----------+------------+-----------+-----+
|sepal length|sepal width|petal length|petal width|class|
+------------+-----------+------------+-----------+-----+
| 4.3| 3.0| 1.1| 0.1| 0|
| 4.4| 2.9| 1.4| 0.2| 0|
| 4.4| 3.0| 1.3| 0.2| 0|
| 4.4| 3.2| 1.3| 0.2| 0|
| 4.6| 3.2| 1.4| 0.2| 0|
+------------+-----------+------------+-----------+-----+

With window operations, we have mapped the string column of labels to label indices.

Training

The GPU version of XGBoost-Spark supports both regression and classification models. Although we use the Iris
dataset in this tutorial to show how we use XGBoost/XGBoost4J-Spark-GPU to resolve a multi-classes classification
problem, the usage in Regression is very similar to classification.

To train a XGBoost model for classification, we need to claim a XGBoostClassifier first:

import ml.dmlc.xgboost4j.scala.spark.XGBoostClassifier
val xgbParam = Map(

"objective" -> "multi:softprob",
"num_class" -> 3,
"num_round" -> 100,
"tree_method" -> "gpu_hist",
"num_workers" -> 1)

val featuresNames = schema.fieldNames.filter(name => name != labelName)
(continues on next page)
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(continued from previous page)

val xgbClassifier = new XGBoostClassifier(xgbParam)
.setFeaturesCol(featuresNames)
.setLabelCol(labelName)

The available parameters for training a XGBoost model can be found in here. Similar to the XGBoost4J-Spark package,
in addition to the default set of parameters, XGBoost4J-Spark-GPU also supports the camel-case variant of these
parameters to be consistent with Spark’s MLlib naming convention.

Specifically, each parameter in this page has its equivalent form in XGBoost4J-Spark-GPU with camel case. For
example, to set max_depth for each tree, you can pass parameter just like what we did in the above code snippet (as
max_depth wrapped in a Map), or you can do it through setters in XGBoostClassifer:

val xgbClassifier = new XGBoostClassifier(xgbParam)
.setFeaturesCol(featuresNames)
.setLabelCol(labelName)

xgbClassifier.setMaxDepth(2)

Note: In contrast with XGBoost4j-Spark which accepts both a feature column with VectorUDT type and
an array of feature column names, XGBoost4j-Spark-GPU only accepts an array of feature column names by
setFeaturesCol(value: Array[String]).

After setting XGBoostClassifier parameters and feature/label columns, we can build a transformer, XGBoostClassi-
ficationModel by fitting XGBoostClassifier with the input DataFrame. This fit operation is essentially the training
process and the generated model can then be used in other tasks like prediction.

val xgbClassificationModel = xgbClassifier.fit(train)

Prediction

When we get a model, either a XGBoostClassificationModel or a XGBoostRegressionModel, it takes a DataFrame as
an input, reads the column containing feature vectors, predicts for each feature vector, and outputs a new DataFrame
with the following columns by default:

• XGBoostClassificationModel will output margins (rawPredictionCol), probabilities(probabilityCol) and
the eventual prediction labels (predictionCol) for each possible label.

• XGBoostRegressionModel will output prediction a label(predictionCol).

val xgbClassificationModel = xgbClassifier.fit(train)
val results = xgbClassificationModel.transform(test)
results.show()

With the above code snippet, we get a DataFrame as result, which contains the margin, probability for each class, and
the prediction for each instance.

+------------+-----------+------------------+-------------------+-----+------------------
→˓--+--------------------+----------+
|sepal length|sepal width| petal length| petal width|class| ␣
→˓rawPrediction| probability|prediction|
+------------+-----------+------------------+-------------------+-----+------------------

(continues on next page)
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(continued from previous page)

→˓--+--------------------+----------+
| 4.5| 2.3| 1.3|0.30000000000000004| 0|[3.16666603088378.
→˓..|[0.98853939771652...| 0.0|
| 4.6| 3.1| 1.5| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 4.8| 3.1| 1.6| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 4.8| 3.4| 1.6| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 4.8| 3.4|1.9000000000000001| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 4.9| 2.4| 3.3| 1.0| 1|[-2.1498908996582.
→˓..|[0.00596602633595...| 1.0|
| 4.9| 2.5| 4.5| 1.7| 2|[-2.1498908996582.
→˓..|[0.00596602633595...| 1.0|
| 5.0| 3.5| 1.3|0.30000000000000004| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.1| 2.5| 3.0| 1.1| 1|[3.16666603088378.
→˓..|[0.98853939771652...| 0.0|
| 5.1| 3.3| 1.7| 0.5| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.1| 3.5| 1.4| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.1| 3.8| 1.6| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.2| 3.4| 1.4| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.2| 3.5| 1.5| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.2| 4.1| 1.5| 0.1| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.4| 3.9| 1.7| 0.4| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.5| 2.4| 3.8| 1.1| 1|[-2.1498908996582.
→˓..|[0.00596602633595...| 1.0|
| 5.5| 4.2| 1.4| 0.2| 0|[3.25857257843017.
→˓..|[0.98969423770904...| 0.0|
| 5.7| 2.5| 5.0| 2.0| 2|[-2.1498908996582.
→˓..|[0.00280966912396...| 2.0|
| 5.7| 3.0| 4.2| 1.2| 1|[-2.1498908996582.
→˓..|[0.00643939292058...| 1.0|
+------------+-----------+------------------+-------------------+-----+------------------
→˓--+--------------------+----------+
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Submit the application

Here’s an example to submit an end-to-end XGBoost-4j-Spark-GPU Spark application to an Apache Spark Standalone
cluster, assuming the application main class is Iris and the application jar is iris-1.0.0.jar

cudf_version=22.02.0
rapids_version=22.02.0
xgboost_version=1.6.1
main_class=Iris
app_jar=iris-1.0.0.jar

spark-submit \
--master $master \
--packages ai.rapids:cudf:${cudf_version},com.nvidia:rapids-4-spark_2.12:${rapids_

→˓version},ml.dmlc:xgboost4j-gpu_2.12:${xgboost_version},ml.dmlc:xgboost4j-spark-gpu_2.
→˓12:${xgboost_version} \
--conf spark.executor.cores=12 \
--conf spark.task.cpus=1 \
--conf spark.executor.resource.gpu.amount=1 \
--conf spark.task.resource.gpu.amount=0.08 \
--conf spark.rapids.sql.csv.read.double.enabled=true \
--conf spark.rapids.sql.hasNans=false \
--conf spark.plugins=com.nvidia.spark.SQLPlugin \
--class ${main_class} \
${app_jar}

• First, we need to specify the RAPIDS Accelerator, cudf, xgboost4j-gpu, xgboost4j-spark-gpu
packages by --packages

• Second, RAPIDS Accelerator is a Spark plugin, so we need to configure it by specifying spark.
plugins=com.nvidia.spark.SQLPlugin

For details about other RAPIDS Accelerator other configurations, please refer to the configuration.

For RAPIDS Accelerator Frequently Asked Questions, please refer to the frequently-asked-questions.

XGBoost4J Java API

XGBoost4J Scala API

XGBoost4J-Spark Scala API

XGBoost4J-Flink Scala API

1.13 XGBoost.jl

See XGBoost.jl Project page.
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1.14 XGBoost C Package

XGBoost implements a set of C API designed for various bindings, we maintain its stability and the CMake/make
build interface. See C API Tutorial for an introduction and demo/c-api/ for related examples. Also one can generate
doxygen document by providing -DBUILD_C_DOC=ON as parameter to CMake during build, or simply look at function
comments in include/xgboost/c_api.h. The reference is exported to sphinx with the help of breathe, which doesn’t
contain links to examples but might be easier to read. For the original doxygen pages please visit:

• C API documentation (latest master branch)

• C API documentation (last stable release)

1.14.1 C API Reference

• Library

• DMatrix

– Streaming

• Booster

– Prediction

– Serialization

• Collective

Library

group Library
These functions are used to obtain general information about XGBoost including version, build info and current
global configuration.

Typedefs

typedef void *DMatrixHandle
handle to DMatrix

typedef void *BoosterHandle
handle to Booster
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Functions

void XGBoostVersion(int *major, int *minor, int *patch)
Return the version of the XGBoost library being currently used.

The output variable is only written if it’s not NULL.

Parameters

• major – Store the major version number

• minor – Store the minor version number

• patch – Store the patch (revision) number

int XGBuildInfo(char const **out)
Get compile information of shared library.

Parameters
out – string encoded JSON object containing build flags and dependency version.

Returns
0 for success, -1 for failure

const char *XGBGetLastError()
get string message of the last error

all function in this file will return 0 when success and -1 when an error occurred, XGBGetLastError can
be called to retrieve the error

this function is thread safe and can be called by different thread

Returns
const char* error information

int XGBRegisterLogCallback(void (*callback)(const char*))
register callback function for LOG(INFO) messages &#8212; helpful messages that are not errors. Note:
this function can be called by multiple threads. The callback function will run on the thread that registered
it

Returns
0 for success, -1 for failure

int XGBSetGlobalConfig(char const *config)
Set global configuration (collection of parameters that apply globally). This function accepts the list of
key-value pairs representing the global-scope parameters to be configured. The list of key-value pairs are
passed in as a JSON string.

Parameters
config – a JSON string representing the list of key-value pairs. The JSON object shall be
flat: no value can be a JSON object or an array.

Returns
0 for success, -1 for failure

int XGBGetGlobalConfig(char const **out_config)
Get current global configuration (collection of parameters that apply globally).

Parameters
out_config – pointer to received returned global configuration, represented as a JSON
string.
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Returns
0 for success, -1 for failure

DMatrix

group DMatrix
DMatrix is the baisc data storage for XGBoost used by all XGBoost algorithms including both training, predic-
tion and explanation. There are a few variants of DMatrix including normal DMatrix, which is a CSR matrix,
QuantileDMatrix, which is used by histogram-based tree methods for saving memory, and lastly the experi-
mental external-memory-based DMatrix, which reads data in batches during training. For the last two variants,
see the Streaming group.

Functions

int XGDMatrixCreateFromFile(const char *fname, int silent, DMatrixHandle *out)
load a data matrix

Parameters

• fname – the name of the file

• silent – whether print messages during loading

• out – a loaded data matrix

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromCSREx(const size_t *indptr, const unsigned *indices, const float *data, size_t
nindptr, size_t nelem, size_t num_col, DMatrixHandle *out)

create a matrix content from CSR format

Parameters

• indptr – pointer to row headers

• indices – findex

• data – fvalue

• nindptr – number of rows in the matrix + 1

• nelem – number of nonzero elements in the matrix

• num_col – number of columns; when it’s set to kAdapterUnknownSize, then guess from
data

• out – created dmatrix

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromCSR(char const *indptr, char const *indices, char const *data, bst_ulong ncol, char
const *config, DMatrixHandle *out)

Create a matrix from CSR matrix.

Parameters

• indptr – JSON encoded array_interface to row pointers in CSR.
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• indices – JSON encoded array_interface to column indices in CSR.

• data – JSON encoded array_interface to values in CSR.

• ncol – Number of columns.

• config – JSON encoded configuration. Required values are:

– missing: Which value to represent missing value.

– nthread (optional): Number of threads used for initializing DMatrix.

• out – created dmatrix

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromDense(char const *data, char const *config, DMatrixHandle *out)
Create a matrix from dense array.

Parameters

• data – JSON encoded array_interface to array values.

• config – JSON encoded configuration. Required values are:

– missing: Which value to represent missing value.

– nthread (optional): Number of threads used for initializing DMatrix.

• out – created dmatrix

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromCSCEx(const size_t *col_ptr, const unsigned *indices, const float *data, size_t
nindptr, size_t nelem, size_t num_row, DMatrixHandle *out)

create a matrix content from CSC format

Parameters

• col_ptr – pointer to col headers

• indices – findex

• data – fvalue

• nindptr – number of rows in the matrix + 1

• nelem – number of nonzero elements in the matrix

• num_row – number of rows; when it’s set to 0, then guess from data

• out – created dmatrix

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromMat(const float *data, bst_ulong nrow, bst_ulong ncol, float missing,
DMatrixHandle *out)

create matrix content from dense matrix

Parameters

• data – pointer to the data space

• nrow – number of rows
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• ncol – number columns

• missing – which value to represent missing value

• out – created dmatrix

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromMat_omp(const float *data, bst_ulong nrow, bst_ulong ncol, float missing,
DMatrixHandle *out, int nthread)

create matrix content from dense matrix

Parameters

• data – pointer to the data space

• nrow – number of rows

• ncol – number columns

• missing – which value to represent missing value

• out – created dmatrix

• nthread – number of threads (up to maximum cores available, if <=0 use all cores)

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromDT(void **data, const char **feature_stypes, bst_ulong nrow, bst_ulong ncol,
DMatrixHandle *out, int nthread)

create matrix content from python data table

Parameters

• data – pointer to pointer to column data

• feature_stypes – pointer to strings

• nrow – number of rows

• ncol – number columns

• out – created dmatrix

• nthread – number of threads (up to maximum cores available, if <=0 use all cores)

Returns
0 when success, -1 when failure happens

int XGDMatrixCreateFromCudaColumnar(char const *data, char const *config, DMatrixHandle *out)
Create DMatrix from CUDA columnar format. (cuDF)

Parameters

• data – Array of JSON encoded cuda_array_interface for each column.

• config – JSON encoded configuration. Required values are:

– missing: Which value to represent missing value.

– nthread (optional): Number of threads used for initializing DMatrix.

• out – created dmatrix

Returns
0 when success, -1 when failure happens
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int XGDMatrixCreateFromCudaArrayInterface(char const *data, char const *config, DMatrixHandle
*out)

Create DMatrix from CUDA array.

Parameters

• data – JSON encoded cuda_array_interface for array data.

• config – JSON encoded configuration. Required values are:

– missing: Which value to represent missing value.

– nthread (optional): Number of threads used for initializing DMatrix.

• out – created dmatrix

Returns
0 when success, -1 when failure happens

int XGImportArrowRecordBatch(DataIterHandle data_handle, void *ptr_array, void *ptr_schema)

int XGDMatrixCreateFromArrowCallback(XGDMatrixCallbackNext *next, char const *config,
DMatrixHandle *out)

Construct DMatrix from arrow using callbacks. Arrow related C API is not stable and subject to change in
the future.

Parameters

• next – Callback function for fetching arrow records.

• config – JSON encoded configuration. Required values are:

– missing: Which value to represent missing value.

– nbatch: Number of batches in arrow table.

– nthread (optional): Number of threads used for initializing DMatrix.

• out – The created DMatrix.

Returns
0 when success, -1 when failure happens

int XGDMatrixSliceDMatrix(DMatrixHandle handle, const int *idxset, bst_ulong len, DMatrixHandle *out)
create a new dmatrix from sliced content of existing matrix

Parameters

• handle – instance of data matrix to be sliced

• idxset – index set

• len – length of index set

• out – a sliced new matrix

Returns
0 when success, -1 when failure happens

int XGDMatrixSliceDMatrixEx(DMatrixHandle handle, const int *idxset, bst_ulong len, DMatrixHandle
*out, int allow_groups)

create a new dmatrix from sliced content of existing matrix

Parameters

• handle – instance of data matrix to be sliced
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• idxset – index set

• len – length of index set

• out – a sliced new matrix

• allow_groups – allow slicing of an array with groups

Returns
0 when success, -1 when failure happens

int XGDMatrixFree(DMatrixHandle handle)
free space in data matrix

Returns
0 when success, -1 when failure happens

int XGDMatrixSaveBinary(DMatrixHandle handle, const char *fname, int silent)
load a data matrix into binary file

Parameters

• handle – a instance of data matrix

• fname – file name

• silent – print statistics when saving

Returns
0 when success, -1 when failure happens

int XGDMatrixSetInfoFromInterface(DMatrixHandle handle, char const *field, char const
*c_interface_str)

Set content in array interface to a content in info.

Parameters

• handle – a instance of data matrix

• field – field name.

• c_interface_str – JSON string representation of array interface.

Returns
0 when success, -1 when failure happens

int XGDMatrixSetFloatInfo(DMatrixHandle handle, const char *field, const float *array, bst_ulong len)
set float vector to a content in info

Parameters

• handle – a instance of data matrix

• field – field name, can be label, weight

• array – pointer to float vector

• len – length of array

Returns
0 when success, -1 when failure happens

int XGDMatrixSetUIntInfo(DMatrixHandle handle, const char *field, const unsigned *array, bst_ulong len)
set uint32 vector to a content in info

Parameters
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• handle – a instance of data matrix

• field – field name

• array – pointer to unsigned int vector

• len – length of array

Returns
0 when success, -1 when failure happens

int XGDMatrixSetStrFeatureInfo(DMatrixHandle handle, const char *field, const char **features, const
bst_ulong size)

Set string encoded information of all features.

Accepted fields are:

• feature_name

• feature_type

char const* feat_names [] {"feat_0", "feat_1"};
XGDMatrixSetStrFeatureInfo(handle, "feature_name", feat_names, 2);

// i for integer, q for quantitive, c for categorical. Similarly "int" and
→˓"float"
// are also recognized.
char const* feat_types [] {"i", "q"};
XGDMatrixSetStrFeatureInfo(handle, "feature_type", feat_types, 2);

Parameters

• handle – An instance of data matrix

• field – Field name

• features – Pointer to array of strings.

• size – Size of features pointer (number of strings passed in).

Returns
0 when success, -1 when failure happens

int XGDMatrixGetStrFeatureInfo(DMatrixHandle handle, const char *field, bst_ulong *size, const char
***out_features)

Get string encoded information of all features.

Accepted fields are:

• feature_name

• feature_type

Caller is responsible for copying out the data, before next call to any API function of XGBoost.

char const **c_out_features = NULL;
bst_ulong out_size = 0;

(continues on next page)
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(continued from previous page)

// Asumming the feature names are already set by `XGDMatrixSetStrFeatureInfo`.
XGDMatrixGetStrFeatureInfo(handle, "feature_name", &out_size,

&c_out_features)

for (bst_ulong i = 0; i < out_size; ++i) {
// Here we are simply printing the string. Copy it out if the feature name is
// useful after printing.
printf("feature %lu: %s\n", i, c_out_features[i]);

}

Parameters

• handle – An instance of data matrix

• field – Field name

• size – Size of output pointer features (number of strings returned).

• out_features – Address of a pointer to array of strings. Result is stored in thread local
memory.

Returns
0 when success, -1 when failure happens

int XGDMatrixSetDenseInfo(DMatrixHandle handle, const char *field, void const *data, bst_ulong size, int
type)

Set meta info from dense matrix. Valid field names are:

• label

• weight

• base_margin

• group

• label_lower_bound

• label_upper_bound

• feature_weights

Parameters

• handle – An instance of data matrix

• field – Field name

• data – Pointer to consecutive memory storing data.

• size – Size of the data, this is relative to size of type. (Meaning NOT number of bytes.)

• type – Indicator of data type. This is defined in xgboost::DataType enum class.

– float = 1

– double = 2

– uint32_t = 3

– uint64_t = 4
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Returns
0 when success, -1 when failure happens

int XGDMatrixSetGroup(DMatrixHandle handle, const unsigned *group, bst_ulong len)
(deprecated) Use XGDMatrixSetUIntInfo instead. Set group of the training matrix

Parameters

• handle – a instance of data matrix

• group – pointer to group size

• len – length of array

Returns
0 when success, -1 when failure happens

int XGDMatrixGetFloatInfo(const DMatrixHandle handle, const char *field, bst_ulong *out_len, const float
**out_dptr)

get float info vector from matrix.

Parameters

• handle – a instance of data matrix

• field – field name

• out_len – used to set result length

• out_dptr – pointer to the result

Returns
0 when success, -1 when failure happens

int XGDMatrixGetUIntInfo(const DMatrixHandle handle, const char *field, bst_ulong *out_len, const
unsigned **out_dptr)

get uint32 info vector from matrix

Parameters

• handle – a instance of data matrix

• field – field name

• out_len – The length of the field.

• out_dptr – pointer to the result

Returns
0 when success, -1 when failure happens

int XGDMatrixNumRow(DMatrixHandle handle, bst_ulong *out)
get number of rows.

Parameters

• handle – the handle to the DMatrix

• out – The address to hold number of rows.

Returns
0 when success, -1 when failure happens
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int XGDMatrixNumCol(DMatrixHandle handle, bst_ulong *out)
get number of columns

Parameters

• handle – the handle to the DMatrix

• out – The output of number of columns

Returns
0 when success, -1 when failure happens

int XGDMatrixNumNonMissing(DMatrixHandle handle, bst_ulong *out)
Get number of valid values from DMatrix.

Parameters

• handle – the handle to the DMatrix

• out – The output of number of non-missing values

Returns
0 when success, -1 when failure happens

int XGDMatrixGetDataAsCSR(DMatrixHandle const handle, char const *config, bst_ulong *out_indptr,
unsigned *out_indices, float *out_data)

Get the predictors from DMatrix as CSR matrix for testing. If this is a quantized DMatrix, quantized values
are returned instead.

Unlike most of XGBoost C functions, caller of XGDMatrixGetDataAsCSR is required to allocate the mem-
ory for return buffer instead of using thread local memory from XGBoost. This is to avoid allocating a huge
memory buffer that can not be freed until exiting the thread.

Parameters

• handle – the handle to the DMatrix

• config – Json configuration string. At the moment it should be an empty document, pre-
served for future use.

• out_indptr – indptr of output CSR matrix.

• out_indices – Column index of output CSR matrix.

• out_data – Data value of CSR matrix.

Returns
0 when success, -1 when failure happens

Streaming

group Streaming
Quantile DMatrix and external memory DMatrix can be created from batches of data.

There are 2 sets of data callbacks for DMatrix. The first one is currently exclusively used by JVM packages. It
uses XGBoostBatchCSR to accept batches for CSR formated input, and concatenate them into 1 final big CSR.
The related functions are:

• XGBCallbackSetData
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• XGBCallbackDataIterNext

• XGDMatrixCreateFromDataIter

Another set is used by external data iterator. It accept foreign data iterators as callbacks. There are 2 different
senarios where users might want to pass in callbacks instead of raw data. First it’s the Quantile DMatrix used
by hist and GPU Hist. For this case, the data is first compressed by quantile sketching then merged. This is
particular useful for distributed setting as it eliminates 2 copies of data. 1 by a concat from external library
to make the data into a blob for normal DMatrix initialization, another by the internal CSR copy of DMatrix.
The second use case is external memory support where users can pass a custom data iterator into XGBoost for
loading data in batches. There are short notes on each of the use cases in respected DMatrix factory function.

Related functions are:

Factory functions

• XGDMatrixCreateFromCallback for external memory

• XGQuantileDMatrixCreateFromCallback for quantile DMatrix

Proxy that callers can use to pass data to XGBoost

• XGProxyDMatrixCreate

• XGDMatrixCallbackNext

• DataIterResetCallback

• XGProxyDMatrixSetDataCudaArrayInterface

• XGProxyDMatrixSetDataCudaColumnar

• XGProxyDMatrixSetDataDense

• XGProxyDMatrixSetDataCSR

• . . . (data setters)

Typedefs

typedef void *DataIterHandle
handle to a external data iterator

typedef void *DataHolderHandle
handle to a internal data holder.

typedef int XGBCallbackSetData(DataHolderHandle handle, XGBoostBatchCSR batch)
Callback to set the data to handle,.

Param handle
The handle to the callback.

Param batch
The data content to be set.
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typedef int XGBCallbackDataIterNext(DataIterHandle data_handle, XGBCallbackSetData *set_function,
DataHolderHandle set_function_handle)

The data reading callback function. The iterator will be able to give subset of batch in the data.

If there is data, the function will call set_function to set the data.

Param data_handle
The handle to the callback.

Param set_function
The batch returned by the iterator

Param set_function_handle
The handle to be passed to set function.

Return
0 if we are reaching the end and batch is not returned.

typedef int XGDMatrixCallbackNext(DataIterHandle iter)
Callback function prototype for getting next batch of data.

Param iter
A handler to the user defined iterator.

Return
0 when success, -1 when failure happens

typedef void DataIterResetCallback(DataIterHandle handle)
Callback function prototype for resetting external iterator.

Functions

int XGDMatrixCreateFromDataIter(DataIterHandle data_handle, XGBCallbackDataIterNext *callback,
const char *cache_info, DMatrixHandle *out)

Create a DMatrix from a data iterator.

Parameters

• data_handle – The handle to the data.

• callback – The callback to get the data.

• cache_info – Additional information about cache file, can be null.

• out – The created DMatrix

Returns
0 when success, -1 when failure happens.

int XGProxyDMatrixCreate(DMatrixHandle *out)
Create a DMatrix proxy for setting data, can be free by XGDMatrixFree.

Second set of callback functions, used by constructing Quantile DMatrix or external memory DMatrix
using custom iterator.

Parameters
out – The created Device Quantile DMatrix

Returns
0 when success, -1 when failure happens
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int XGDMatrixCreateFromCallback(DataIterHandle iter, DMatrixHandle proxy, DataIterResetCallback
*reset, XGDMatrixCallbackNext *next, char const *config,
DMatrixHandle *out)

Create an external memory DMatrix with data iterator.

Short note for how to use second set of callback for external memory data support:

• Step 0: Define a data iterator with 2 methods reset, and next.

• Step 1: Create a DMatrix proxy by XGProxyDMatrixCreate and hold the handle.

• Step 2: Pass the iterator handle, proxy handle and 2 methods into XGDMatrixCreateFromCallback,
along with other parameters encoded as a JSON object.

• Step 3: Call appropriate data setters in next functions.

Parameters

• iter – A handle to external data iterator.

• proxy – A DMatrix proxy handle created by XGProxyDMatrixCreate.

• reset – Callback function resetting the iterator state.

• next – Callback function yielding the next batch of data.

• config – JSON encoded parameters for DMatrix construction. Accepted fields are:

– missing: Which value to represent missing value

– cache_prefix: The path of cache file, caller must initialize all the directories in this path.

– nthread (optional): Number of threads used for initializing DMatrix.

• out – [out] The created external memory DMatrix

Returns
0 when success, -1 when failure happens

int XGQuantileDMatrixCreateFromCallback(DataIterHandle iter, DMatrixHandle proxy, DataIterHandle
ref, DataIterResetCallback *reset, XGDMatrixCallbackNext
*next, char const *config, DMatrixHandle *out)

Create a Quantile DMatrix with data iterator.

Short note for how to use the second set of callback for (GPU)Hist tree method:

• Step 0: Define a data iterator with 2 methods reset, and next.

• Step 1: Create a DMatrix proxy by XGProxyDMatrixCreate and hold the handle.

• Step 2: Pass the iterator handle, proxy handle and 2 methods into
XGQuantileDMatrixCreateFromCallback.

• Step 3: Call appropriate data setters in next functions.

See test_iterative_dmatrix.cu or Python interface for examples.

Parameters

• iter – A handle to external data iterator.

• proxy – A DMatrix proxy handle created by XGProxyDMatrixCreate.
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• ref – Reference DMatrix for providing quantile information.

• reset – Callback function resetting the iterator state.

• next – Callback function yielding the next batch of data.

• config – JSON encoded parameters for DMatrix construction. Accepted fields are:

– missing: Which value to represent missing value

– nthread (optional): Number of threads used for initializing DMatrix.

– max_bin (optional): Maximum number of bins for building histogram.

• out – The created Device Quantile DMatrix

Returns
0 when success, -1 when failure happens

int XGDeviceQuantileDMatrixCreateFromCallback(DataIterHandle iter, DMatrixHandle proxy,
DataIterResetCallback *reset,
XGDMatrixCallbackNext *next, float missing, int
nthread, int max_bin, DMatrixHandle *out)

Create a Device Quantile DMatrix with data iterator.

Deprecated:
since 1.7.0

See also:

XGQuantileDMatrixCreateFromCallback()

int XGProxyDMatrixSetDataCudaArrayInterface(DMatrixHandle handle, const char *c_interface_str)
Set data on a DMatrix proxy.

Parameters

• handle – A DMatrix proxy created by XGProxyDMatrixCreate

• c_interface_str – Null terminated JSON document string representation of CUDA ar-
ray interface.

Returns
0 when success, -1 when failure happens

int XGProxyDMatrixSetDataCudaColumnar(DMatrixHandle handle, const char *c_interface_str)
Set data on a DMatrix proxy.

Parameters

• handle – A DMatrix proxy created by XGProxyDMatrixCreate

• c_interface_str – Null terminated JSON document string representation of CUDA ar-
ray interface, with an array of columns.

Returns
0 when success, -1 when failure happens

int XGProxyDMatrixSetDataDense(DMatrixHandle handle, char const *c_interface_str)
Set data on a DMatrix proxy.

Parameters

• handle – A DMatrix proxy created by XGProxyDMatrixCreate
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• c_interface_str – Null terminated JSON document string representation of array inter-
face.

Returns
0 when success, -1 when failure happens

int XGProxyDMatrixSetDataCSR(DMatrixHandle handle, char const *indptr, char const *indices, char const
*data, bst_ulong ncol)

Set data on a DMatrix proxy.

Parameters

• handle – A DMatrix proxy created by XGProxyDMatrixCreate

• indptr – JSON encoded array_interface to row pointer in CSR.

• indices – JSON encoded array_interface to column indices in CSR.

• data – JSON encoded array_interface to values in CSR..

• ncol – The number of columns of input CSR matrix.

Returns
0 when success, -1 when failure happens

struct XGBoostBatchCSR
#include <c_api.h> Mini batch used in XGBoost Data Iteration.

Booster

group Booster
The Booster class is the gradient-boosted model for XGBoost.

Functions

int XGBoosterCreate(const DMatrixHandle dmats[], bst_ulong len, BoosterHandle *out)
create xgboost learner

Parameters

• dmats – matrices that are set to be cached

• len – length of dmats

• out – handle to the result booster

Returns
0 when success, -1 when failure happens

int XGBoosterFree(BoosterHandle handle)
free obj in handle

Parameters
handle – handle to be freed

Returns
0 when success, -1 when failure happens
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int XGBoosterSlice(BoosterHandle handle, int begin_layer, int end_layer, int step, BoosterHandle *out)
Slice a model using boosting index. The slice m:n indicates taking all trees that were fit during the boosting
rounds m, (m+1), (m+2), . . . , (n-1).

Parameters

• handle – Booster to be sliced.

• begin_layer – start of the slice

• end_layer – end of the slice; end_layer=0 is equivalent to end_layer=num_boost_round

• step – step size of the slice

• out – Sliced booster.

Returns
0 when success, -1 when failure happens, -2 when index is out of bound.

int XGBoosterBoostedRounds(BoosterHandle handle, int *out)
Get number of boosted rounds from gradient booster. When process_type is update, this number might
drop due to removed tree.

Parameters

• handle – Handle to booster.

• out – Pointer to output integer.

Returns
0 when success, -1 when failure happens

int XGBoosterSetParam(BoosterHandle handle, const char *name, const char *value)
set parameters

Parameters

• handle – handle

• name – parameter name

• value – value of parameter

Returns
0 when success, -1 when failure happens

int XGBoosterGetNumFeature(BoosterHandle handle, bst_ulong *out)
get number of features

Parameters

• handle – Handle to booster.

• out – number of features

Returns
0 when success, -1 when failure happens

int XGBoosterUpdateOneIter(BoosterHandle handle, int iter, DMatrixHandle dtrain)
update the model in one round using dtrain

Parameters

• handle – handle

• iter – current iteration rounds
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• dtrain – training data

Returns
0 when success, -1 when failure happens

int XGBoosterBoostOneIter(BoosterHandle handle, DMatrixHandle dtrain, float *grad, float *hess,
bst_ulong len)

update the model, by directly specify gradient and second order gradient, this can be used to replace Up-
dateOneIter, to support customized loss function

Parameters

• handle – handle

• dtrain – training data

• grad – gradient statistics

• hess – second order gradient statistics

• len – length of grad/hess array

Returns
0 when success, -1 when failure happens

int XGBoosterEvalOneIter(BoosterHandle handle, int iter, DMatrixHandle dmats[], const char *evnames[],
bst_ulong len, const char **out_result)

get evaluation statistics for xgboost

Parameters

• handle – handle

• iter – current iteration rounds

• dmats – pointers to data to be evaluated

• evnames – pointers to names of each data

• len – length of dmats

• out_result – the string containing evaluation statistics

Returns
0 when success, -1 when failure happens

int XGBoosterDumpModel(BoosterHandle handle, const char *fmap, int with_stats, bst_ulong *out_len, const
char ***out_dump_array)

dump model, return array of strings representing model dump

Parameters

• handle – handle

• fmap – name to fmap can be empty string

• with_stats – whether to dump with statistics

• out_len – length of output array

• out_dump_array – pointer to hold representing dump of each model

Returns
0 when success, -1 when failure happens
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int XGBoosterDumpModelEx(BoosterHandle handle, const char *fmap, int with_stats, const char *format,
bst_ulong *out_len, const char ***out_dump_array)

dump model, return array of strings representing model dump

Parameters

• handle – handle

• fmap – name to fmap can be empty string

• with_stats – whether to dump with statistics

• format – the format to dump the model in

• out_len – length of output array

• out_dump_array – pointer to hold representing dump of each model

Returns
0 when success, -1 when failure happens

int XGBoosterDumpModelWithFeatures(BoosterHandle handle, int fnum, const char **fname, const char
**ftype, int with_stats, bst_ulong *out_len, const char
***out_models)

dump model, return array of strings representing model dump

Parameters

• handle – handle

• fnum – number of features

• fname – names of features

• ftype – types of features

• with_stats – whether to dump with statistics

• out_len – length of output array

• out_models – pointer to hold representing dump of each model

Returns
0 when success, -1 when failure happens

int XGBoosterDumpModelExWithFeatures(BoosterHandle handle, int fnum, const char **fname, const char
**ftype, int with_stats, const char *format, bst_ulong *out_len,
const char ***out_models)

dump model, return array of strings representing model dump

Parameters

• handle – handle

• fnum – number of features

• fname – names of features

• ftype – types of features

• with_stats – whether to dump with statistics

• format – the format to dump the model in

• out_len – length of output array

• out_models – pointer to hold representing dump of each model
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Returns
0 when success, -1 when failure happens

int XGBoosterGetAttr(BoosterHandle handle, const char *key, const char **out, int *success)
Get string attribute from Booster.

Parameters

• handle – handle

• key – The key of the attribute.

• out – The result attribute, can be NULL if the attribute do not exist.

• success – Whether the result is contained in out.

Returns
0 when success, -1 when failure happens

int XGBoosterSetAttr(BoosterHandle handle, const char *key, const char *value)
Set or delete string attribute.

Parameters

• handle – handle

• key – The key of the attribute.

• value – The value to be saved. If nullptr, the attribute would be deleted.

Returns
0 when success, -1 when failure happens

int XGBoosterGetAttrNames(BoosterHandle handle, bst_ulong *out_len, const char ***out)
Get the names of all attribute from Booster.

Parameters

• handle – handle

• out_len – the argument to hold the output length

• out – pointer to hold the output attribute stings

Returns
0 when success, -1 when failure happens

int XGBoosterSetStrFeatureInfo(BoosterHandle handle, const char *field, const char **features, const
bst_ulong size)

Set string encoded feature info in Booster, similar to the feature info in DMatrix.

Accepted fields are:

• feature_name

• feature_type

Parameters

• handle – An instance of Booster

• field – Field name

• features – Pointer to array of strings.

• size – Size of features pointer (number of strings passed in).
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Returns
0 when success, -1 when failure happens

int XGBoosterGetStrFeatureInfo(BoosterHandle handle, const char *field, bst_ulong *len, const char
***out_features)

Get string encoded feature info from Booster, similar to feature info in DMatrix.

Accepted fields are:

• feature_name

• feature_type

Caller is responsible for copying out the data, before next call to any API function of XGBoost.

Parameters

• handle – An instance of Booster

• field – Field name

• len – Size of output pointer features (number of strings returned).

• out_features – Address of a pointer to array of strings. Result is stored in thread local
memory.

Returns
0 when success, -1 when failure happens

int XGBoosterFeatureScore(BoosterHandle handle, const char *config, bst_ulong *out_n_features, char
const ***out_features, bst_ulong *out_dim, bst_ulong const **out_shape, float
const **out_scores)

Calculate feature scores for tree models. When used on linear model, only the weight importance type is
defined, and output scores is a row major matrix with shape [n_features, n_classes] for multi-class model.
For tree model, out_n_feature is always equal to out_n_scores and has multiple definitions of importance
type.

Parameters

• handle – An instance of Booster

• config – Parameters for computing scores encoded as JSON. Accepted JSON keys are:

– importance_type: A JSON string with following possible values:

∗ ’weight’: the number of times a feature is used to split the data across all trees.

∗ ’gain’: the average gain across all splits the feature is used in.

∗ ’cover’: the average coverage across all splits the feature is used in.

∗ ’total_gain’: the total gain across all splits the feature is used in.

∗ ’total_cover’: the total coverage across all splits the feature is used in.

– feature_map: An optional JSON string with URI or path to the feature map file.

– feature_names: An optional JSON array with string names for each feature.

• out_n_features – Length of output feature names.

• out_features – An array of string as feature names, ordered the same as output scores.

• out_dim – Dimension of output feature scores.

• out_shape – Shape of output feature scores with length of out_dim.
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• out_scores – An array of floating point as feature scores with shape of out_shape.

Returns
0 when success, -1 when failure happens

Prediction

group Prediction
These functions are used for running prediction and explanation algorithms.

Functions

int XGBoosterPredict(BoosterHandle handle, DMatrixHandle dmat, int option_mask, unsigned ntree_limit,
int training, bst_ulong *out_len, const float **out_result)

make prediction based on dmat (deprecated, use XGBoosterPredictFromDMatrix instead)

Deprecated:

See also:

XGBoosterPredictFromDMatrix()

Parameters

• handle – handle

• dmat – data matrix

• option_mask – bit-mask of options taken in prediction, possible values 0:normal
prediction 1:output margin instead of transformed value 2:output leaf index of trees
instead of leaf value, note leaf index is unique per tree 4:output feature contributions
to individual predictions

• ntree_limit – limit number of trees used for prediction, this is only valid for boosted
trees when the parameter is set to 0, we will use all the trees

• training – Whether the prediction function is used as part of a training loop. Pre-
diction can be run in 2 scenarios:

a. Given data matrix X, obtain prediction y_pred from the model.

b. Obtain the prediction for computing gradients. For example, DART booster per-
forms dropout during training, and the prediction result will be different from the
one obtained by normal inference step due to dropped trees. Set training=false for
the first scenario. Set training=true for the second scenario. The second scenario
applies when you are defining a custom objective function.

• out_len – used to store length of returning result

• out_result – used to set a pointer to array

Returns
0 when success, -1 when failure happens
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int XGBoosterPredictFromDMatrix(BoosterHandle handle, DMatrixHandle dmat, char const *config,
bst_ulong const **out_shape, bst_ulong *out_dim, float const
**out_result)

Make prediction from DMatrix, replacing XGBoosterPredict.

“type”: [0, 6]

• 0: normal prediction

• 1: output margin

• 2: predict contribution

• 3: predict approximated contribution

• 4: predict feature interaction

• 5: predict approximated feature interaction

• 6: predict leaf “training”: bool Whether the prediction function is used as part of a training loop.
Not used for inplace prediction.

Prediction can be run in 2 scenarios:

a. Given data matrix X, obtain prediction y_pred from the model.

b. Obtain the prediction for computing gradients. For example, DART booster performs dropout during
training, and the prediction result will be different from the one obtained by normal inference step due
to dropped trees. Set training=false for the first scenario. Set training=true for the second scenario.
The second scenario applies when you are defining a custom objective function. “iteration_begin”:
int Beginning iteration of prediction. “iteration_end”: int End iteration of prediction. Set to 0 this
will become the size of tree model (all the trees). “strict_shape”: bool Whether should we reshape
the output with stricter rules. If set to true, normal/margin/contrib/interaction predict will output
consistent shape disregarding the use of multi-class model, and leaf prediction will output 4-dim
array representing: (n_samples, n_iterations, n_classes, n_trees_in_forest)

Example JSON input for running a normal prediction with strict output shape, 2 dim for softprob , 1 dim
for others.

{
"type": 0,
"training": false,
"iteration_begin": 0,
"iteration_end": 0,
"strict_shape": true

}

See also:

XGBoosterPredictFromDense XGBoosterPredictFromCSR XGBoosterPredictFromCudaArray XGBoost-
erPredictFromCudaColumnar

Parameters

• handle – Booster handle

• dmat – DMatrix handle
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• config – String encoded predict configuration in JSON format, with following avail-
able fields in the JSON object:

• out_shape – Shape of output prediction (copy before use).

• out_dim – Dimension of output prediction.

• out_result – Buffer storing prediction value (copy before use).

Returns
0 when success, -1 when failure happens

int XGBoosterPredictFromDense(BoosterHandle handle, char const *values, char const *config,
DMatrixHandle m, bst_ulong const **out_shape, bst_ulong *out_dim,
const float **out_result)

Inplace prediction from CPU dense matrix.

Parameters

• handle – Booster handle.

• values – JSON encoded array_interface to values.

• config – See XGBoosterPredictFromDMatrix for more info. Additional fields for
inplace prediction are:

– ”missing”: float

• m – An optional (NULL if not available) proxy DMatrix instance storing meta info.

• out_shape – See XGBoosterPredictFromDMatrix for more info.

• out_dim – See XGBoosterPredictFromDMatrix for more info.

• out_result – See XGBoosterPredictFromDMatrix for more info.

Returns
0 when success, -1 when failure happens

int XGBoosterPredictFromCSR(BoosterHandle handle, char const *indptr, char const *indices, char const
*values, bst_ulong ncol, char const *config, DMatrixHandle m, bst_ulong
const **out_shape, bst_ulong *out_dim, const float **out_result)

Inplace prediction from CPU CSR matrix.

Parameters

• handle – Booster handle.

• indptr – JSON encoded array_interface to row pointer in CSR.

• indices – JSON encoded array_interface to column indices in CSR.

• values – JSON encoded array_interface to values in CSR..

• ncol – Number of features in data.

• config – See XGBoosterPredictFromDMatrix for more info. Additional fields for
inplace prediction are:

– ”missing”: float

• m – An optional (NULL if not available) proxy DMatrix instance storing meta info.

• out_shape – See XGBoosterPredictFromDMatrix for more info.

• out_dim – See XGBoosterPredictFromDMatrix for more info.
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• out_result – See XGBoosterPredictFromDMatrix for more info.

Returns
0 when success, -1 when failure happens

int XGBoosterPredictFromCudaArray(BoosterHandle handle, char const *values, char const *config,
DMatrixHandle m, bst_ulong const **out_shape, bst_ulong
*out_dim, const float **out_result)

Inplace prediction from CUDA Dense matrix (cupy in Python).

Parameters

• handle – Booster handle

• values – JSON encoded cuda_array_interface to values.

• config – See XGBoosterPredictFromDMatrix for more info. Additional fields for
inplace prediction are:

– ”missing”: float

• m – An optional (NULL if not available) proxy DMatrix instance storing meta info.

• out_shape – See XGBoosterPredictFromDMatrix for more info.

• out_dim – See XGBoosterPredictFromDMatrix for more info.

• out_result – See XGBoosterPredictFromDMatrix for more info.

Returns
0 when success, -1 when failure happens

int XGBoosterPredictFromCudaColumnar(BoosterHandle handle, char const *values, char const *config,
DMatrixHandle m, bst_ulong const **out_shape, bst_ulong
*out_dim, const float **out_result)

Inplace prediction from CUDA dense dataframe (cuDF in Python).

Parameters

• handle – Booster handle

• values – List of cuda_array_interface for all columns encoded in JSON list.

• config – See XGBoosterPredictFromDMatrix for more info. Additional fields for
inplace prediction are:

– ”missing”: float

• m – An optional (NULL if not available) proxy DMatrix instance storing meta info.

• out_shape – See XGBoosterPredictFromDMatrix for more info.

• out_dim – See XGBoosterPredictFromDMatrix for more info.

• out_result – See XGBoosterPredictFromDMatrix for more info.

Returns
0 when success, -1 when failure happens
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Serialization

group Serialization
There are multiple ways to serialize a Booster object depending on the use case.

Short note for serialization APIs. There are 3 different sets of serialization API.

• Functions with the term “Model” handles saving/loading XGBoost model like trees or linear weights.
Striping out parameters configuration like training algorithms or CUDA device ID. These functions are
designed to let users reuse the trained model for different tasks, examples are prediction, training contin-
uation or model interpretation.

• Functions with the term “Config” handles save/loading configuration. It helps user to study the internal
of XGBoost. Also user can use the load method for specifying parameters in a structured way. These
functions are introduced in 1.0.0, and are not yet stable.

• Functions with the term “Serialization” are combined of above two. They are used in situations like check-
pointing, or continuing training task in distributed environment. In these cases the task must be carried
out without any user intervention.

Functions

int XGBoosterLoadModel(BoosterHandle handle, const char *fname)
Load model from existing file.

Parameters

• handle – handle

• fname – File URI or file name.

Returns
0 when success, -1 when failure happens

int XGBoosterSaveModel(BoosterHandle handle, const char *fname)
Save model into existing file.

Parameters

• handle – handle

• fname – File URI or file name.

Returns
0 when success, -1 when failure happens

int XGBoosterLoadModelFromBuffer(BoosterHandle handle, const void *buf, bst_ulong len)
load model from in memory buffer

Parameters

• handle – handle

• buf – pointer to the buffer

• len – the length of the buffer

Returns
0 when success, -1 when failure happens

1.14. XGBoost C Package 379



xgboost, Release 1.7.6

int XGBoosterSaveModelToBuffer(BoosterHandle handle, char const *config, bst_ulong *out_len, char
const **out_dptr)

Save model into raw bytes, return header of the array. User must copy the result out, before next xgboost
call.

“format”: str

• json: Output booster will be encoded as JSON.

• ubj: Output booster will be encoded as Univeral binary JSON.

• deprecated: Output booster will be encoded as old custom binary format. Do not use this format
except for compatibility reasons.

Parameters

• handle – handle

• config – JSON encoded string storing parameters for the function. Following keys
are expected in the JSON document:

• out_len – The argument to hold the output length

• out_dptr – The argument to hold the output data pointer

Returns
0 when success, -1 when failure happens

int XGBoosterGetModelRaw(BoosterHandle handle, bst_ulong *out_len, const char **out_dptr)
Save booster to a buffer with in binary format.

Deprecated:
since 1.6.0

See also:

XGBoosterSaveModelToBuffer()

int XGBoosterSerializeToBuffer(BoosterHandle handle, bst_ulong *out_len, const char **out_dptr)
Memory snapshot based serialization method. Saves everything states into buffer.

Parameters

• handle – handle

• out_len – the argument to hold the output length

• out_dptr – the argument to hold the output data pointer

Returns
0 when success, -1 when failure happens

int XGBoosterUnserializeFromBuffer(BoosterHandle handle, const void *buf, bst_ulong len)
Memory snapshot based serialization method. Loads the buffer returned from XGBoosterSerializeTo-
Buffer.

Parameters

• handle – handle

• buf – pointer to the buffer
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• len – the length of the buffer

Returns
0 when success, -1 when failure happens

int XGBoosterLoadRabitCheckpoint(BoosterHandle handle, int *version)
Initialize the booster from rabit checkpoint. This is used in distributed training API.

Parameters

• handle – handle

• version – The output version of the model.

Returns
0 when success, -1 when failure happens

int XGBoosterSaveRabitCheckpoint(BoosterHandle handle)
Save the current checkpoint to rabit.

Parameters
handle – handle

Returns
0 when success, -1 when failure happens

int XGBoosterSaveJsonConfig(BoosterHandle handle, bst_ulong *out_len, char const **out_str)
Save XGBoost’s internal configuration into a JSON document. Currently the support is experimental,
function signature may change in the future without notice.

Parameters

• handle – handle to Booster object.

• out_len – length of output string

• out_str – A valid pointer to array of characters. The characters array is allocated and
managed by XGBoost, while pointer to that array needs to be managed by caller.

Returns
0 when success, -1 when failure happens

int XGBoosterLoadJsonConfig(BoosterHandle handle, char const *config)
Load XGBoost’s internal configuration from a JSON document. Currently the support is experimental,
function signature may change in the future without notice.

Parameters

• handle – handle to Booster object.

• config – string representation of a JSON document.

Returns
0 when success, -1 when failure happens
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Collective

group Collective
Experimental support for exposing internal communicator in XGBoost.

Functions

int XGCommunicatorInit(char const *config)
Initialize the collective communicator.

Currently the communicator API is experimental, function signatures may change in the future without
notice.

Call this once before using anything.

The additional configuration is not required. Usually the communicator will detect settings from environ-
ment variables.

Parameters
config – JSON encoded configuration. Accepted JSON keys are:

• xgboost_communicator: The type of the communicator. Can be set as an environment
variable.

– rabit: Use Rabit. This is the default if the type is unspecified.

– mpi: Use MPI.

– federated: Use the gRPC interface for Federated Learning. Only applicable to the
Rabit communicator (these are case-sensitive):

• rabit_tracker_uri: Hostname of the tracker.

• rabit_tracker_port: Port number of the tracker.

• rabit_task_id: ID of the current task, can be used to obtain deterministic rank assign-
ment.

• rabit_world_size: Total number of workers.

• rabit_hadoop_mode: Enable Hadoop support.

• rabit_tree_reduce_minsize: Minimal size for tree reduce.

• rabit_reduce_ring_mincount: Minimal count to perform ring reduce.

• rabit_reduce_buffer: Size of the reduce buffer.

• rabit_bootstrap_cache: Size of the bootstrap cache.

• rabit_debug: Enable debugging.

• rabit_timeout: Enable timeout.

• rabit_timeout_sec: Timeout in seconds.

• rabit_enable_tcp_no_delay: Enable TCP no delay on Unix platforms. Only applicable
to the Rabit communicator (these are case-sensitive, and can be set as environment
variables):

• DMLC_TRACKER_URI: Hostname of the tracker.

• DMLC_TRACKER_PORT: Port number of the tracker.

382 Chapter 1. Contents



xgboost, Release 1.7.6

• DMLC_TASK_ID: ID of the current task, can be used to obtain deterministic rank
assignment.

• DMLC_ROLE: Role of the current task, “worker” or “server”.

• DMLC_NUM_ATTEMPT: Number of attempts after task failure.

• DMLC_WORKER_CONNECT_RETRY: Number of retries to connect to the tracker.
Only applicable to the Federated communicator (use upper case for environment vari-
ables, use lower case for runtime configuration):

• federated_server_address: Address of the federated server.

• federated_world_size: Number of federated workers.

• federated_rank: Rank of the current worker.

• federated_server_cert: Server certificate file path. Only needed for the SSL mode.

• federated_client_key: Client key file path. Only needed for the SSL mode.

• federated_client_cert: Client certificate file path. Only needed for the SSL mode.

Returns
0 for success, -1 for failure.

int XGCommunicatorFinalize(void)
Finalize the collective communicator.

Call this function after you finished all jobs.

Returns
0 for success, -1 for failure.

int XGCommunicatorGetRank(void)
Get rank of current process.

Returns
Rank of the worker.

int XGCommunicatorGetWorldSize(void)
Get total number of processes.

Returns
Total world size.

int XGCommunicatorIsDistributed(void)
Get if the communicator is distributed.

Returns
True if the communicator is distributed.

int XGCommunicatorPrint(char const *message)
Print the message to the communicator.

This function can be used to communicate the information of the progress to the user who monitors the
communicator.

Parameters
message – The message to be printed.

Returns
0 for success, -1 for failure.
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int XGCommunicatorGetProcessorName(const char **name_str)
Get the name of the processor.

Parameters
name_str – Pointer to received returned processor name.

Returns
0 for success, -1 for failure.

int XGCommunicatorBroadcast(void *send_receive_buffer, size_t size, int root)
Broadcast a memory region to all others from root. This function is NOT thread-safe.

Example:

int a = 1;
Broadcast(&a, sizeof(a), root);

Parameters

• send_receive_buffer – Pointer to the send or receive buffer.

• size – Size of the data.

• root – The process rank to broadcast from.

Returns
0 for success, -1 for failure.

int XGCommunicatorAllreduce(void *send_receive_buffer, size_t count, int data_type, int op)
Perform in-place allreduce. This function is NOT thread-safe.

Example Usage: the following code gives sum of the result

vector<int> data(10);
...
Allreduce(&data[0], data.size(), DataType:kInt32, Op::kSum);
...

Parameters

• send_receive_buffer – Buffer for both sending and receiving data.

• count – Number of elements to be reduced.

• data_type – Enumeration of data type, see xgboost::collective::DataType in commu-
nicator.h.

• op – Enumeration of operation type, see xgboost::collective::Operation in communi-
cator.h.

Returns
0 for success, -1 for failure.
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1.15 XGBoost C++ API

Starting from 1.0 release, CMake will generate installation rules to export all C++ headers. But the c++ interface is
much closer to the internal of XGBoost than other language bindings. As a result it’s changing quite often and we don’t
maintain its stability. Along with the plugin system (see plugin/example in XGBoost’s source tree), users can utilize
some existing c++ headers for gaining more access to the internal of XGBoost.

• C++ interface documentation (latest master branch)

• C++ interface documentation (last stable release)

1.16 XGBoost Command Line version

See XGBoost Command Line walkthrough.

1.17 Contribute to XGBoost

XGBoost has been developed by community members. Everyone is welcome to contribute. We value all forms of
contributions, including, but not limited to:

• Code reviews for pull requests

• Documentation and usage examples

• Community participation in forums and issues

• Code readability and developer guide

– We welcome contributions that add code comments to improve readability.

– We also welcome contributions to docs to explain the design choices of the XGBoost internals.

• Test cases to make the codebase more robust.

• Tutorials, blog posts, talks that promote the project.

Here are guidelines for contributing to various aspect of the XGBoost project:

1.17.1 XGBoost Community Guideline

XGBoost adopts the Apache style model and governs by merit. We believe that it is important to create an inclusive
community where everyone can use, contribute to, and influence the direction of the project. See CONTRIBUTORS.md
for the current list of contributors.

General Development Process

Everyone in the community is welcomed to send patches, documents, and propose new directions to the project. The
key guideline here is to enable everyone in the community to get involved and participate the decision and development.
When major changes are proposed, an RFC should be sent to allow discussion by the community. We encourage public
discussion, archivable channels such as issues and discuss forum, so that everyone in the community can participate
and review the process later.

Code reviews are one of the key ways to ensure the quality of the code. High-quality code reviews prevent technical
debt for long-term and are crucial to the success of the project. A pull request needs to be reviewed before it gets
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merged. A committer who has the expertise of the corresponding area would moderate the pull request and the merge
the code when it is ready. The corresponding committer could request multiple reviewers who are familiar with the
area of the code. We encourage contributors to request code reviews themselves and help review each other’s code –
remember everyone is volunteering their time to the community, high-quality code review itself costs as much as the
actual code contribution, you could get your code quickly reviewed if you do others the same favor.

The community should strive to reach a consensus on technical decisions through discussion. We expect committers
and PMCs to moderate technical discussions in a diplomatic way, and provide suggestions with clear technical reasoning
when necessary.

Committers

Committers are individuals who are granted the write access to the project. A committer is usually responsible for
a certain area or several areas of the code where they oversee the code review process. The area of contribution can
take all forms, including code contributions and code reviews, documents, education, and outreach. Committers are
essential for a high quality and healthy project. The community actively look for new committers from contributors.
Here is a list of useful traits that help the community to recognize potential committers:

• Sustained contribution to the project, demonstrated by discussion over RFCs, code reviews and proposals of
new features, and other development activities. Being familiar with, and being able to take ownership on one or
several areas of the project.

• Quality of contributions: High-quality, readable code contributions indicated by pull requests that can be merged
without a substantial code review. History of creating clean, maintainable code and including good test cases.
Informative code reviews to help other contributors that adhere to a good standard.

• Community involvement: active participation in the discussion forum, promote the projects via tutorials, talks
and outreach. We encourage committers to collaborate broadly, e.g. do code reviews and discuss designs with
community members that they do not interact physically.

The Project Management Committee(PMC) consists group of active committers that moderate the discussion, manage
the project release, and proposes new committer/PMC members. Potential candidates are usually proposed via an
internal discussion among PMCs, followed by a consensus approval, i.e. least 3 +1 votes, and no vetoes. Any veto
must be accompanied by reasoning. PMCs should serve the community by upholding the community practices and
guidelines XGBoost a better community for everyone. PMCs should strive to only nominate new candidates outside of
their own organization.

The PMC is in charge of the project’s continuous integration (CI) and testing infrastructure. Currently, we host our
own Jenkins server at https://xgboost-ci.net. The PMC shall appoint committer(s) to manage the CI infrastructure.
The PMC may accept 3rd-party donations and sponsorships that would defray the cost of the CI infrastructure. See
Donations.

Reviewers

Reviewers are individuals who actively contributed to the project and are willing to participate in the code review of
new contributions. We identify reviewers from active contributors. The committers should explicitly solicit reviews
from reviewers. High-quality code reviews prevent technical debt for long-term and are crucial to the success of the
project. A pull request to the project has to be reviewed by at least one reviewer in order to be merged.
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1.17.2 Donations

Motivation

DMLC/XGBoost has grown from a research project incubated in academia to one of the most widely used gradient
boosting framework in production environment. On one side, with the growth of volume and variety of data in the
production environment, users are putting accordingly growing expectation to XGBoost in terms of more functions,
scalability and robustness. On the other side, as an open source project which develops in a fast pace, XGBoost has
been receiving contributions from many individuals and organizations around the world. Given the high expectation
from the users and the increasing channels of contribution to the project, delivering the high quality software presents
a challenge to the project maintainers.

A robust and efficient continuous integration (CI) infrastructure is one of the most critical solutions to address the
above challenge. A CI service will monitor an open-source repository and run a suite of integration tests for every
incoming contribution. This way, the CI ensures that every proposed change in the codebase is compatible with existing
functionalities. Furthermore, XGBoost can enable more thorough tests with a powerful CI infrastructure to cover cases
which are closer to the production environment.

There are several CI services available free to open source projects, such as Travis CI and AppVeyor. The XGBoost
project already utilizes GitHub Actions. However, the XGBoost project has needs that these free services do not
adequately address. In particular, the limited usage quota of resources such as CPU and memory leaves XGBoost
developers unable to bring “too-intensive” tests. In addition, they do not offer test machines with GPUs for testing
XGBoost-GPU code base which has been attracting more and more interest across many organizations. Consequently,
the XGBoost project uses a cloud-hosted test farm. We use BuildKite to organize CI pipelines.

The cloud-hosted test farm has recurring operating expenses. It utilizes a leading cloud provider (AWS) to accommo-
date variable workload. BuildKite launches worker machines on AWS on demand, to run the test suite on incoming
contributions. To save cost, the worker machines are terminated when they are no longer needed.

To help defray the hosting cost, the XGBoost project seeks donations from third parties.

Donations and Sponsorships

Donors may choose to make one-time donations or recurring donations on monthly or yearly basis. Donors who commit
to the Sponsor tier will have their logo displayed on the front page of the XGBoost project.

Fiscal host: Open Source Collective 501(c)(6)

The Project Management Committee (PMC) of the XGBoost project appointed Open Source Collective as their fiscal
host. The platform is a 501(c)(6) registered entity and will manage the funds on the behalf of the PMC so that PMC
members will not have to manage the funds directly. The platform currently hosts several well-known JavaScript
frameworks such as Babel, Vue, and Webpack.

All expenses incurred for hosting CI will be submitted to the fiscal host with receipts. Only the expenses in the following
categories will be approved for reimbursement:

• Cloud exprenses for the cloud test farm (https://buildkite.com/xgboost)

• Cost of domain https://xgboost-ci.net

• Monthly cost of using BuildKite

• Hosting cost of the User Forum (https://discuss.xgboost.ai)
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Administration of cloud CI infrastructure

The PMC shall appoint committer(s) to administer the cloud CI infrastructure on their behalf. The current administra-
tors are as follows:

• Primary administrator: Hyunsu Cho

• Secondary administrator: Jiaming Yuan

The administrators shall make good-faith effort to keep the CI expenses under control. The expenses shall not exceed
the available funds. The administrators should post regular updates on CI expenses.

1.17.3 Coding Guideline

Contents

• C++ Coding Guideline

• Python Coding Guideline

• R Coding Guideline

– Code Style

– Rmarkdown Vignettes

– R package versioning

– Registering native routines in R

• Running Formatting Checks Locally

– Linter

– Clang-tidy

• Guide for handling user input data

C++ Coding Guideline

• Follow Google style for C++, with two exceptions:

– Each line of text may contain up to 100 characters.

– The use of C++ exceptions is allowed.

• Use C++11 features such as smart pointers, braced initializers, lambda functions, and std::thread.

• Use Doxygen to document all the interface code.

• We have a series of automatic checks to ensure that all of our codebase complies with the Google style. Be-
fore submitting your pull request, you are encouraged to run the style checks on your machine. See R Coding
Guideline.
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Python Coding Guideline

• Follow PEP 8: Style Guide for Python Code. We use Pylint to automatically enforce PEP 8 style across our
Python codebase. Before submitting your pull request, you are encouraged to run Pylint on your machine. See
R Coding Guideline.

• Docstrings should be in NumPy docstring format.

R Coding Guideline

Code Style

• We follow Google’s C++ Style guide for C++ code.

– This is mainly to be consistent with the rest of the project.

– Another reason is we will be able to check style automatically with a linter.

• You can check the style of the code by typing the following command at root folder.

make rcpplint

• When needed, you can disable the linter warning of certain line with // NOLINT(*) comments.

• We use roxygen for documenting the R package.

Rmarkdown Vignettes

Rmarkdown vignettes are placed in R-package/vignettes. These Rmarkdown files are not compiled. We host the
compiled version on doc/R-package.

The following steps are followed to add a new Rmarkdown vignettes:

• Add the original rmarkdown to R-package/vignettes.

• Modify doc/R-package/Makefile to add the markdown files to be build.

• Clone the dmlc/web-data repo to folder doc.

• Now type the following command on doc/R-package:

make the-markdown-to-make.md

• This will generate the markdown, as well as the figures in doc/web-data/xgboost/knitr.

• Modify the doc/R-package/index.md to point to the generated markdown.

• Add the generated figure to the dmlc/web-data repo.

– If you already cloned the repo to doc, this means git add

• Create PR for both the markdown and dmlc/web-data.

• You can also build the document locally by typing the following command at the doc directory:

make html

The reason we do this is to avoid exploded repo size due to generated images.
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R package versioning

See XGBoost Release Policy.

Registering native routines in R

According to R extension manual, it is good practice to register native routines and to disable symbol search. When
any changes or additions are made to the C++ interface of the R package, please make corresponding changes in src/
init.c as well.

Running Formatting Checks Locally

Once you submit a pull request to dmlc/xgboost, we perform two automatic checks to enforce coding style conventions.
To expedite the code review process, you are encouraged to run the checks locally on your machine prior to submitting
your pull request.

Linter

We use pylint and cpplint to enforce style convention and find potential errors. Linting is especially useful for Python,
as we can catch many errors that would have otherwise occured at run-time.

To run this check locally, run the following command from the top level source tree:

cd /path/to/xgboost/
make lint

This command requires the Python packages pylint and cpplint.

Clang-tidy

Clang-tidy is an advance linter for C++ code, made by the LLVM team. We use it to conform our C++ codebase to
modern C++ practices and conventions.

To run this check locally, run the following command from the top level source tree:

cd /path/to/xgboost/
python3 tests/ci_build/tidy.py

Also, the script accepts two optional integer arguments, namely --cpp and --cuda. By default they are both set to 1,
meaning that both C++ and CUDA code will be checked. If the CUDA toolkit is not installed on your machine, you’ll
encounter an error. To exclude CUDA source from linting, use:

cd /path/to/xgboost/
python3 tests/ci_build/tidy.py --cuda=0

Similarly, if you want to exclude C++ source from linting:

cd /path/to/xgboost/
python3 tests/ci_build/tidy.py --cpp=0
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Guide for handling user input data

This is an in-comprehensive guide for handling user input data. XGBoost has wide verity of native supported data
structures, mostly come from higher level language bindings. The inputs ranges from basic contiguous 1 dimension
memory buffer to more sophisticated data structures like columnar data with validity mask. Raw input data can be used
in 2 places, firstly it’s the construction of various DMatrix, secondly it’s the in-place prediction. For plain memory
buffer, there’s not much to discuss since it’s just a pointer with a size. But for general n-dimension array and columnar
data, there are many subtleties. XGBoost has 3 different data structures for handling optionally masked arrays (tensors),
for consuming user inputs ArrayInterface should be chosen. There are many existing functions that accept only plain
pointer due to legacy reasons (XGBoost started as a much simpler library and didn’t care about memory usage that
much back then). The ArrayInterface is a in memory representation of __array_interface__ protocol defined
by numpy or the __cuda_array_interface__ defined by numba. Following is a check list of things to have in mind
when accepting related user inputs:

• [ ] Is it strided? (identified by the strides field)

• [ ] If it’s a vector, is it row vector or column vector? (Identified by both shape and strides).

• [ ] Is the data type supported? Half type and 128 integer types should be converted before going into XGBoost.

• [ ] Does it have higher than 1 dimension? (identified by shape field)

• [ ] Are some of dimensions trivial? (shape[dim] <= 1)

• [ ] Does it have mask? (identified by mask field)

• [ ] Can the mask be broadcasted? (unsupported at the moment)

• [ ] Is it on CUDA memory? (identified by data field, and optionally stream)

Most of the checks are handled by the ArrayInterface during construction, except for the data type issue since it
doesn’t know how to cast such pointers with C builtin types. But for safety reason one should still try to write related
tests for the all items. The data type issue should be taken care of in language binding for each of the specific data
input. For single-chunk columnar format, it’s just a masked array for each column so it should be treated uniformly
as normal array. For input predictor X, we have adapters for each type of input. Some are composition of the others.
For instance, CSR matrix has 3 potentially strided arrays for indptr, indices and values. No assumption should
be made to these components (all the check boxes should be considered). Slicing row of CSR matrix should calculate
the offset of each field based on respective strides.

For meta info like labels, which is growing both in size and complexity, we accept only masked array at the moment
(no specialized adapter). One should be careful about the input data shape. For base margin it can be 2 dim or higher if
we have multiple targets in the future. The getters in DMatrix returns only 1 dimension flatten vectors at the moment,
which can be improved in the future when it’s needed.

1.17.4 Adding and running tests

A high-quality suite of tests is crucial in ensuring correctness and robustness of the codebase. Here, we provide
instructions how to run unit tests, and also how to add a new one.

Contents

• Adding a new unit test

– Python package: pytest

– C++: Google Test

– JVM packages: JUnit / scalatest
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– R package: testthat

• Running Unit Tests Locally

– R package

– JVM packages

– Python package: pytest

– C++: Google Test

• Sanitizers: Detect memory errors and data races

– How to build XGBoost with sanitizers

– How to use sanitizers with CUDA support

– Other sanitizer runtime options

Adding a new unit test

Python package: pytest

Add your test under the directory tests/python/ or tests/python-gpu/ (if you are testing GPU code). Refer to the PyTest
tutorial to learn how to write tests for Python code.

You may try running your test by following instructions in this section.

C++: Google Test

Add your test under the directory tests/cpp/. Refer to this excellent tutorial on using Google Test.

You may try running your test by following instructions in this section. Note. Google Test version 1.8.1 or later is
required.

JVM packages: JUnit / scalatest

The JVM packages for XGBoost (XGBoost4J / XGBoost4J-Spark) use the Maven Standard Directory Layout. Specif-
ically, the tests for the JVM packages are located in the following locations:

• jvm-packages/xgboost4j/src/test/

• jvm-packages/xgboost4j-spark/src/test/

To write a test for Java code, see JUnit 5 tutorial. To write a test for Scala, see Scalatest tutorial.

You may try running your test by following instructions in this section.
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R package: testthat

Add your test under the directory R-package/tests/testthat. Refer to this excellent tutorial on testthat.

You may try running your test by following instructions in this section.

Running Unit Tests Locally

R package

Run

make Rcheck

at the root of the project directory.

JVM packages

As part of the building process, tests are run:

mvn package

Python package: pytest

To run Python unit tests, first install pytest package:

pip3 install pytest

Then compile XGBoost according to instructions in Building the Shared Library. Finally, invoke pytest at the project
root directory:

# Tell Python where to find XGBoost module
export PYTHONPATH=./python-package
pytest -v -s --fulltrace tests/python

In addition, to test CUDA code, run:

# Tell Python where to find XGBoost module
export PYTHONPATH=./python-package
pytest -v -s --fulltrace tests/python-gpu

(For this step, you should have compiled XGBoost with CUDA enabled.)
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C++: Google Test

To build and run C++ unit tests enable tests while running CMake:

mkdir build
cd build
cmake -DGOOGLE_TEST=ON -DUSE_DMLC_GTEST=ON ..
make
make test

To enable tests for CUDA code, add -DUSE_CUDA=ON and -DUSE_NCCL=ON (CUDA toolkit required):

mkdir build
cd build
cmake -DGOOGLE_TEST=ON -DUSE_DMLC_GTEST=ON -DUSE_CUDA=ON -DUSE_NCCL=ON ..
make
make test

One can also run all unit test using ctest tool which provides higher flexibility. For example:

ctest --verbose

Sanitizers: Detect memory errors and data races

By default, sanitizers are bundled in GCC and Clang/LLVM. One can enable sanitizers with GCC >= 4.8 or LLVM >=
3.1, But some distributions might package sanitizers separately. Here is a list of supported sanitizers with corresponding
library names:

• Address sanitizer: libasan

• Undefined sanitizer: libubsan

• Leak sanitizer: liblsan

• Thread sanitizer: libtsan

Memory sanitizer is exclusive to LLVM, hence not supported in XGBoost. With latest compilers like gcc-9, when
sanitizer flags are specified, the compiler driver should be able to link the runtime libraries automatically.

How to build XGBoost with sanitizers

One can build XGBoost with sanitizer support by specifying -DUSE_SANITIZER=ON. By default, address sanitizer
and leak sanitizer are used when you turn the USE_SANITIZER flag on. You can always change the default by providing
a semicolon separated list of sanitizers to ENABLED_SANITIZERS. Note that thread sanitizer is not compatible with
the other two sanitizers.

cmake -DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak" /path/to/xgboost

By default, CMake will search regular system paths for sanitizers, you can also supply a specified SANITIZER_PATH.

cmake -DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak" \
-DSANITIZER_PATH=/path/to/sanitizers /path/to/xgboost
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How to use sanitizers with CUDA support

Runing XGBoost on CUDA with address sanitizer (asan) will raise memory error. To use asan with CUDA correctly,
you need to configure asan via ASAN_OPTIONS environment variable:

ASAN_OPTIONS=protect_shadow_gap=0 ${BUILD_DIR}/testxgboost

Other sanitizer runtime options

By default undefined sanitizer doesn’t print out the backtrace. You can enable it by exporting environment variable:

UBSAN_OPTIONS=print_stacktrace=1 ${BUILD_DIR}/testxgboost

For details, please consult official documentation for sanitizers.

1.17.5 Documentation and Examples

Contents

• Documents

• Examples

Documents

• Python and C documentation is built using Sphinx.

• Each document is written in reStructuredText.

• You can build document locally to see the effect, by running

make html

inside the doc/ directory. The online document is hosted by Read the Docs where the imported project is managed by
Hyunsu Cho and Jiaming Yuan.

Examples

• Use cases and examples will be in demo.

• We are super excited to hear about your story. If you have blog posts, tutorials, or code solutions using XGBoost,
please tell us, and we will add a link in the example pages.
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1.17.6 Git Workflow Howtos

Contents

• How to resolve conflict with master

• How to combine multiple commits into one

• What is the consequence of force push

How to resolve conflict with master

• First rebase to most recent master

# The first two steps can be skipped after you do it once.
git remote add upstream https://github.com/dmlc/xgboost
git fetch upstream
git rebase upstream/master

• The git may show some conflicts it cannot merge, say conflicted.py.

– Manually modify the file to resolve the conflict.

– After you resolved the conflict, mark it as resolved by

git add conflicted.py

• Then you can continue rebase by

git rebase --continue

• Finally push to your fork, you may need to force push here.

git push --force

How to combine multiple commits into one

Sometimes we want to combine multiple commits, especially when later commits are only fixes to previous ones, to
create a PR with set of meaningful commits. You can do it by following steps.

• Before doing so, configure the default editor of git if you haven’t done so before.

git config core.editor the-editor-you-like

• Assume we want to merge last 3 commits, type the following commands

git rebase -i HEAD~3

• It will pop up an text editor. Set the first commit as pick, and change later ones to squash.

• After you saved the file, it will pop up another text editor to ask you modify the combined commit message.

• Push the changes to your fork, you need to force push.
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git push --force

What is the consequence of force push

The previous two tips requires force push, this is because we altered the path of the commits. It is fine to force push to
your own fork, as long as the commits changed are only yours.

1.17.7 XGBoost Release Policy

Versioning Policy

Starting from XGBoost 1.0.0, each XGBoost release will be versioned as [MAJOR].[FEATURE].[MAINTENANCE]

• MAJOR: We guarantee the API compatibility across releases with the same major version number. We expect
to have a 1+ years development period for a new MAJOR release version.

• FEATURE: We ship new features, improvements and bug fixes through feature releases. The cycle length of a
feature is decided by the size of feature roadmap. The roadmap is decided right after the previous release.

• MAINTENANCE: Maintenance version only contains bug fixes. This type of release only occurs when we found
significant correctness and/or performance bugs and barrier for users to upgrade to a new version of XGBoost
smoothly.

Making a Release

1. Create an issue for the release, noting the estimated date and expected features or major fixes, pin that issue.

2. Bump release version.

1. Modify CMakeLists.txt in source tree and cmake/Python_version.in if needed, run CMake.

2. Modify DESCRIPTION in R-package.

3. Run change_version.sh in jvm-packages/dev

3. Commit the change, create a PR on GitHub on release branch. Port the bumped version to default branch,
optionally with the postfix SNAPSHOT.

4. Create a tag on release branch, either on GitHub or locally.

5. Make a release on GitHub tag page, which might be done with previous step if the tag is created on GitHub.

6. Submit pip, CRAN, and Maven packages.

• The pip package is maintained by Hyunsu Cho and Jiaming Yuan. There’s a helper script for downloading
pre-built wheels and R packages xgboost/dev/release-pypi-r.py along with simple instructions for
using twine.

• The CRAN package is maintained by Tong He and Jiaming Yuan.

• The Maven package is maintained by Nan Zhu and Hyunsu Cho.
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R CRAN Package

Before submitting a release, one should test the package on R-hub and win-builder first. Please note that the R-hub
Windows instance doesn’t have the exact same environment as the one hosted on win-builder.

According to the CRAN policy:

If running a package uses multiple threads/cores it must never use more than two simultaneously: the check
farm is a shared resource and will typically be running many checks simultaneously.

We need to check the number of CPUs used in examples. Export _R_CHECK_EXAMPLE_TIMING_CPU_TO_ELAPSED_THRESHOLD_=2.
5 before running R CMD check --as-cran [1] and make sure the machine you are using has enough CPU cores to
reveal any potential policy violation.

References

[1] https://stat.ethz.ch/pipermail/r-package-devel/2022q4/008610.html

1.17.8 Automated testing in XGBoost project

This document collects tips for using the Continuous Integration (CI) service of the XGBoost project.

Contents

• GitHub Actions

• Reproduce CI testing environments using Docker containers

– Prerequisites

– Building and Running Docker containers locally

• Update pipeline definitions for BuildKite CI

• Managing Elastic CI Stack with BuildKite

– Worker Image Pipeline

– EC2 Autoscaling Groups

GitHub Actions

The configuration files are located under the directory .github/workflows.

Most of the tests listed in the configuration files run automatically for every incoming pull requests and every update
to branches. A few tests however require manual activation:

• R tests with noLD option: Run R tests using a custom-built R with compilation flag --disable-long-double.
See this page for more details about noLD. This is a requirement for keeping XGBoost on CRAN (the R pack-
age index). To invoke this test suite for a particular pull request, simply add a review comment /gha run
r-nold-test. (Ordinary comment won’t work. It needs to be a review comment.)

GitHub Actions is also used to build Python wheels targeting MacOS Intel and Apple Silicon. See
.github/workflows/python_wheels.yml. The python_wheels pipeline sets up environment variables prefixed CIBW_*
to indicate the target OS and processor. The pipeline then invokes the script build_python_wheels.sh, which in
turns calls cibuildwheel to build the wheel. The cibuildwheel is a library that sets up a suitable Python environ-
ment for each OS and processor target. Since we don’t have Apple Silion machine in GitHub Actions, cross-compilation
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is needed; cibuildwheel takes care of the complex task of cross-compiling a Python wheel. (Note that cibuildwheel
will call setup.py bdist_wheel. Since XGBoost has a native library component, setup.py contains a glue code
to call CMake and a C++ compiler to build the native library on the fly.)

Reproduce CI testing environments using Docker containers

In our CI pipelines, we use Docker containers extensively to package many software packages together. You can
reproduce the same testing environment as the CI pipelines by running Docker locally.

Prerequisites

1. Install Docker: https://docs.docker.com/engine/install/ubuntu/

2. Install NVIDIA Docker runtime: https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/
install-guide.html#installing-on-ubuntu-and-debian The runtime lets you access NVIDIA GPUs inside a
Docker container.

Building and Running Docker containers locally

For your convenience, we provide the wrapper script tests/ci_build/ci_build.sh. You can use it as follows:

tests/ci_build/ci_build.sh <CONTAINER_TYPE> <DOCKER_BINARY> --build-arg <BUILD_ARG> \
<COMMAND> ...

where:

• <CONTAINER_TYPE> is the identifier for the container. The wrapper script will use the container definition (Dock-
erfile) located at tests/ci_build/Dockerfile.<CONTAINER_TYPE>. For example, setting the container type
to gpu will cause the script to load the Dockerfile tests/ci_build/Dockerfile.gpu.

• <DOCKER_BINARY> must be either docker or nvidia-docker. Choose nvidia-docker as long as you need
to run any GPU code.

• <BUILD_ARG> is a build argument to be passed to Docker. Must be of form VAR=VALUE. Example: --build-arg
CUDA_VERSION_ARG=11.0. You can pass multiple --build-arg.

• <COMMAND> is the command to run inside the Docker container. This can be more than one argument. Example:
tests/ci_build/build_via_cmake.sh -DUSE_CUDA=ON -DUSE_NCCL=ON.

Optionally, you can set the environment variable CI_DOCKER_EXTRA_PARAMS_INIT to pass extra arguments to Docker.
For example:

# Allocate extra space in /dev/shm to enable NCCL
export CI_DOCKER_EXTRA_PARAMS_INIT='--shm-size=4g'
# Run multi-GPU test suite
tests/ci_build/ci_build.sh gpu nvidia-docker --build-arg CUDA_VERSION_ARG=11.0 \
tests/ci_build/test_python.sh mgpu

To pass multiple extra arguments:

export CI_DOCKER_EXTRA_PARAMS_INIT='-e VAR1=VAL1 -e VAR2=VAL2 -e VAR3=VAL3'
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Update pipeline definitions for BuildKite CI

BuildKite is a SaaS (Software as a Service) platform that orchestrates cloud machines to host CI pipelines. The Build-
Kite platform allows us to define CI pipelines as a declarative YAML file.

The pipeline definitions are found in tests/buildkite/:

• tests/buildkite/pipeline-win64.yml: This pipeline builds and tests XGBoost for the Windows platform.

• tests/buildkite/pipeline-mgpu.yml: This pipeline builds and tests XGBoost with access to multiple
NVIDIA GPUs.

• tests/buildkite/pipeline.yml: This pipeline builds and tests XGBoost with access to a single NVIDIA
GPU. Most tests are located here.

Managing Elastic CI Stack with BuildKite

BuildKite allows us to define cloud resources in a declarative fashion. Every configuration step is now documented
explicitly as code.

Prerequisite: You should have some knowledge of CloudFormation. CloudFormation lets us define a stack of cloud
resources (EC2 machines, Lambda functions, S3 etc) using a single YAML file.

Prerequisite: Gain access to the XGBoost project’s AWS account (admin@xgboost-ci.net), and then set up a cre-
dential pair in order to provision resources on AWS. See Creating an IAM user in your AWS account.

• Option 1. Give full admin privileges to your IAM user. This is the simplest option.

• Option 2. Give limited set of permissions to your IAM user, to reduce the possibility of mess-
ing up other resources. For this, use the script tests/buildkite/infrastructure/service-user/
create_service_user.py.

Worker Image Pipeline

Building images for worker machines used to be a chore: you’d provision an EC2 machine, SSH into it, and manually
install the necessary packages. This process is not only laborous but also error-prone. You may forget to install a
package or change a system configuration.

No more. Now we have an automated pipeline for building images for worker machines.

• Run tests/buildkite/infrastructure/worker-image-pipeline/create_worker_image_pipelines.
py in order to provision CloudFormation stacks named buildkite-linux-amd64-gpu-worker and
buildkite-windows-gpu-worker. They are pipelines that create AMIs (Amazon Machine Images) for Linux
and Windows workers, respectively.

• Navigate to the CloudFormation web console to verify that the image builder pipelines have been provisioned.
It may take some time.

• Once they pipelines have been fully provisioned, run the script tests/buildkite/infrastructure/
worker-image-pipeline/run_pipelines.py to execute the pipelines. New AMIs will be uploaded to the
EC2 service. You can locate them in the EC2 console.

• Make sure to modify tests/buildkite/infrastructure/aws-stack-creator/metadata.py to use the
correct AMI IDs. (For linux-amd64-cpu and linux-arm64-cpu, use the AMIs provided by BuildKite. Con-
sult the AWSRegion2AMI section of https://s3.amazonaws.com/buildkite-aws-stack/latest/aws-stack.yml.)
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EC2 Autoscaling Groups

In EC2, you can create auto-scaling groups, where you can dynamically adjust the number of worker instances according
to workload. When a pull request is submitted, the following steps take place:

1. GitHub sends a signal to the registered webhook, which connects to the BuildKite server.

2. BuildKite sends a signal to a Lambda function named Autoscaling.

3. The Lambda function sends a signal to the auto-scaling group. The group scales up and adds additional worker
instances.

4. New worker instances run the test jobs. Test results are reported back to BuildKite.

5. When the test jobs complete, BuildKite sends a signal to Autoscaling, which in turn requests the autoscaling
group to scale down. Idle worker instances are shut down.

To set up the auto-scaling group, run the script tests/buildkite/infrastructure/aws-stack-creator/
create_stack.py. Check the CloudFormation web console to verify successful provision of auto-scaling groups.
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