object XGBoost
XGBoost Scala Training function.
- Alphabetic
- By Inheritance
- XGBoost
- AnyRef
- Any
- Hide All
- Show All
- Public
- All
Value Members
-
final
def
!=(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
##(): Int
- Definition Classes
- AnyRef → Any
-
final
def
==(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
final
def
asInstanceOf[T0]: T0
- Definition Classes
- Any
-
def
clone(): AnyRef
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )
-
def
crossValidation(data: DMatrix, params: Map[String, Any], round: Int, nfold: Int = 5, metrics: Array[String] = null, obj: ObjectiveTrait = null, eval: EvalTrait = null): Array[String]
Cross-validation with given parameters.
Cross-validation with given parameters.
- data
Data to be trained.
- params
Booster params.
- round
Number of boosting iterations.
- nfold
Number of folds in CV.
- metrics
Evaluation metrics to be watched in CV.
- obj
customized objective
- eval
customized evaluation
- returns
evaluation history
- Annotations
- @throws( classOf[XGBoostError] )
-
final
def
eq(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
def
equals(arg0: Any): Boolean
- Definition Classes
- AnyRef → Any
-
def
finalize(): Unit
- Attributes
- protected[java.lang]
- Definition Classes
- AnyRef
- Annotations
- @throws( classOf[java.lang.Throwable] )
-
final
def
getClass(): Class[_]
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
def
hashCode(): Int
- Definition Classes
- AnyRef → Any
- Annotations
- @native()
-
final
def
isInstanceOf[T0]: Boolean
- Definition Classes
- Any
-
def
loadModel(in: InputStream): Booster
Load a new Booster model from a file opened as input stream.
Load a new Booster model from a file opened as input stream. The assumption is the input stream only contains one XGBoost Model. This can be used to load existing booster models saved by other XGBoost bindings.
- in
The input stream of the file.
- returns
The create booster
- Annotations
- @throws( classOf[XGBoostError] )
-
def
loadModel(modelPath: String): Booster
load model from modelPath
load model from modelPath
- modelPath
booster modelPath
- Annotations
- @throws( classOf[XGBoostError] )
-
final
def
ne(arg0: AnyRef): Boolean
- Definition Classes
- AnyRef
-
final
def
notify(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
notifyAll(): Unit
- Definition Classes
- AnyRef
- Annotations
- @native()
-
final
def
synchronized[T0](arg0: ⇒ T0): T0
- Definition Classes
- AnyRef
-
def
toString(): String
- Definition Classes
- AnyRef → Any
-
def
train(dtrain: DMatrix, params: Map[String, Any], round: Int, watches: Map[String, DMatrix] = Map(), metrics: Array[Array[Float]] = null, obj: ObjectiveTrait = null, eval: EvalTrait = null, earlyStoppingRound: Int = 0, booster: Booster = null): Booster
Train a booster given parameters.
Train a booster given parameters.
- dtrain
Data to be trained.
- params
Parameters.
- round
Number of boosting iterations.
- watches
a group of items to be evaluated during training, this allows user to watch performance on the validation set.
- metrics
array containing the evaluation metrics for each matrix in watches for each iteration
- obj
customized objective
- eval
customized evaluation
- earlyStoppingRound
if non-zero, training would be stopped after a specified number of consecutive increases in any evaluation metric.
- booster
train from scratch if set to null; train from an existing booster if not null.
- returns
The trained booster.
- Annotations
- @throws( classOf[XGBoostError] )
-
final
def
wait(): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long, arg1: Int): Unit
- Definition Classes
- AnyRef
- Annotations
- @throws( ... )
-
final
def
wait(arg0: Long): Unit
- Definition Classes
- AnyRef
- Annotations
- @native() @throws( ... )