Experimental support for external memory

This is similar to the one in quantile_data_iterator.py, but for external memory instead of Quantile DMatrix. The feature is not ready for production use yet.

New in version 1.5.0.

See the tutorial for more details.

import os
import xgboost
from typing import Callable, List, Tuple
from sklearn.datasets import make_regression
import tempfile
import numpy as np

def make_batches(
    n_samples_per_batch: int, n_features: int, n_batches: int, tmpdir: str,
) -> List[Tuple[str, str]]:
    files: List[Tuple[str, str]] = []
    rng = np.random.RandomState(1994)
    for i in range(n_batches):
        X, y = make_regression(n_samples_per_batch, n_features, random_state=rng)
        X_path = os.path.join(tmpdir, "X-" + str(i) + ".npy")
        y_path = os.path.join(tmpdir, "y-" + str(i) + ".npy")
        np.save(X_path, X)
        np.save(y_path, y)
        files.append((X_path, y_path))
    return files

class Iterator(xgboost.DataIter):
    """A custom iterator for loading files in batches."""
    def __init__(self, file_paths: List[Tuple[str, str]]):
        self._file_paths = file_paths
        self._it = 0
        # XGBoost will generate some cache files under current directory with the prefix
        # "cache"
        super().__init__(cache_prefix=os.path.join(".", "cache"))

    def load_file(self) -> Tuple[np.ndarray, np.ndarray]:
        X_path, y_path = self._file_paths[self._it]
        X = np.load(X_path)
        y = np.load(y_path)
        assert X.shape[0] == y.shape[0]
        return X, y

    def next(self, input_data: Callable) -> int:
        """Advance the iterator by 1 step and pass the data to XGBoost.  This function is
        called by XGBoost during the construction of ``DMatrix``

        if self._it == len(self._file_paths):
            # return 0 to let XGBoost know this is the end of iteration
            return 0

        # input_data is a function passed in by XGBoost who has the similar signature to
        # the ``DMatrix`` constructor.
        X, y = self.load_file()
        input_data(data=X, label=y)
        self._it += 1
        return 1

    def reset(self) -> None:
        """Reset the iterator to its beginning"""
        self._it = 0

def main(tmpdir: str) -> xgboost.Booster:
    # generate some random data for demo
    files = make_batches(1024, 17, 31, tmpdir)
    it = Iterator(files)
    # For non-data arguments, specify it here once instead of passing them by the `next`
    # method.
    missing = np.NaN
    Xy = xgboost.DMatrix(it, missing=missing, enable_categorical=False)

    # Other tree methods including ``hist`` and ``gpu_hist`` also work, see tutorial in
    # doc for details.
    booster = xgboost.train(
        {"tree_method": "approx", "max_depth": 2},
        evals=[(Xy, "Train")],
    return booster

if __name__ == "__main__":
    with tempfile.TemporaryDirectory() as tmpdir:

Total running time of the script: ( 0 minutes 0.000 seconds)

Gallery generated by Sphinx-Gallery