Experimental support for external memory

This is similar to the one in quantile_data_iterator.py, but for external memory instead of Quantile DMatrix. The feature is not ready for production use yet.

Added in version 1.5.0.

See the tutorial for more details.

Changed in version 3.0.0: Added ExtMemQuantileDMatrix.

To run the example, following packages in addition to XGBoost native dependencies are required:

  • scikit-learn

If device is cuda, following are also needed:

  • cupy

  • rmm

  • python-cuda

import argparse
import os
import tempfile
from typing import Callable, List, Tuple

import numpy as np
from sklearn.datasets import make_regression

import xgboost


def make_batches(
    n_samples_per_batch: int,
    n_features: int,
    n_batches: int,
    tmpdir: str,
) -> List[Tuple[str, str]]:
    files: List[Tuple[str, str]] = []
    rng = np.random.RandomState(1994)
    for i in range(n_batches):
        X, y = make_regression(n_samples_per_batch, n_features, random_state=rng)
        X_path = os.path.join(tmpdir, "X-" + str(i) + ".npy")
        y_path = os.path.join(tmpdir, "y-" + str(i) + ".npy")
        np.save(X_path, X)
        np.save(y_path, y)
        files.append((X_path, y_path))
    return files


class Iterator(xgboost.DataIter):
    """A custom iterator for loading files in batches."""

    def __init__(self, device: str, file_paths: List[Tuple[str, str]]) -> None:
        self.device = device

        self._file_paths = file_paths
        self._it = 0
        # XGBoost will generate some cache files under the current directory with the
        # prefix "cache"
        super().__init__(cache_prefix=os.path.join(".", "cache"))

    def load_file(self) -> Tuple[np.ndarray, np.ndarray]:
        """Load a single batch of data."""
        X_path, y_path = self._file_paths[self._it]
        # When the `ExtMemQuantileDMatrix` is used, the device must match. GPU cannot
        # consume CPU input data and vice-versa.
        if self.device == "cpu":
            X = np.load(X_path)
            y = np.load(y_path)
        else:
            X = cp.load(X_path)
            y = cp.load(y_path)

        assert X.shape[0] == y.shape[0]
        return X, y

    def next(self, input_data: Callable) -> bool:
        """Advance the iterator by 1 step and pass the data to XGBoost.  This function
        is called by XGBoost during the construction of ``DMatrix``

        """
        if self._it == len(self._file_paths):
            # return False to let XGBoost know this is the end of iteration
            return False

        # input_data is a keyword-only function passed in by XGBoost and has the similar
        # signature to the ``DMatrix`` constructor.
        X, y = self.load_file()
        input_data(data=X, label=y)
        self._it += 1
        return True

    def reset(self) -> None:
        """Reset the iterator to its beginning"""
        self._it = 0


def hist_train(it: Iterator) -> None:
    """The hist tree method can use a special data structure `ExtMemQuantileDMatrix` for
    faster initialization and lower memory usage.

    .. versionadded:: 3.0.0

    """
    # For non-data arguments, specify it here once instead of passing them by the `next`
    # method.
    Xy = xgboost.ExtMemQuantileDMatrix(it, missing=np.nan, enable_categorical=False)
    booster = xgboost.train(
        {"tree_method": "hist", "max_depth": 4, "device": it.device},
        Xy,
        evals=[(Xy, "Train")],
        num_boost_round=10,
    )
    booster.predict(Xy)


def approx_train(it: Iterator) -> None:
    """The approx tree method uses the basic `DMatrix`."""

    # For non-data arguments, specify it here once instead of passing them by the `next`
    # method.
    Xy = xgboost.DMatrix(it, missing=np.nan, enable_categorical=False)
    # ``approx`` is also supported, but less efficient due to sketching. It's
    # recommended to use `hist` instead.
    booster = xgboost.train(
        {"tree_method": "approx", "max_depth": 4, "device": it.device},
        Xy,
        evals=[(Xy, "Train")],
        num_boost_round=10,
    )
    booster.predict(Xy)


def main(tmpdir: str, args: argparse.Namespace) -> None:
    """Entry point for training."""

    # generate some random data for demo
    files = make_batches(
        n_samples_per_batch=1024, n_features=17, n_batches=31, tmpdir=tmpdir
    )
    it = Iterator(args.device, files)

    hist_train(it)
    approx_train(it)


def setup_rmm() -> None:
    """Setup RMM for GPU-based external memory training.

    It's important to use RMM with `CudaAsyncMemoryResource` or `ArenaMemoryResource`
    for GPU-based external memory to improve performance. If XGBoost is not built with
    RMM support, a warning is raised when constructing the `DMatrix`.

    """

    import rmm
    from cuda import cudart
    from rmm.allocators.cupy import rmm_cupy_allocator
    from rmm.mr import ArenaMemoryResource

    if not xgboost.build_info()["USE_RMM"]:
        return

    status, free, total = cudart.cudaMemGetInfo()
    if status != cudart.cudaError_t.cudaSuccess:
        raise RuntimeError(cudart.cudaGetErrorString(status))

    mr = rmm.mr.CudaMemoryResource()
    mr = ArenaMemoryResource(mr, arena_size=int(total * 0.9))

    rmm.mr.set_current_device_resource(mr)
    # Set the allocator for cupy as well.
    cp.cuda.set_allocator(rmm_cupy_allocator)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--device", choices=["cpu", "cuda"], default="cpu")
    args = parser.parse_args()
    if args.device == "cuda":
        import cupy as cp

        setup_rmm()
        # Make sure XGBoost is using RMM for all allocations.
        with xgboost.config_context(use_rmm=True):
            with tempfile.TemporaryDirectory() as tmpdir:
                main(tmpdir, args)
    else:
        with tempfile.TemporaryDirectory() as tmpdir:
            main(tmpdir, args)

Gallery generated by Sphinx-Gallery