Note
Go to the end to download the full example code.
Visual demo for survival analysis (regression) with Accelerated Failure Time (AFT) model.
This demo uses 1D toy data and visualizes how XGBoost fits a tree ensemble. The ensemble model starts out as a flat line and evolves into a step function in order to account for all ranged labels.
import matplotlib.pyplot as plt
import numpy as np
import xgboost as xgb
plt.rcParams.update({"font.size": 13})
# Function to visualize censored labels
def plot_censored_labels(
X: np.ndarray, y_lower: np.ndarray, y_upper: np.ndarray
) -> None:
def replace_inf(x: np.ndarray, target_value: float) -> np.ndarray:
x[np.isinf(x)] = target_value
return x
plt.plot(X, y_lower, "o", label="y_lower", color="blue")
plt.plot(X, y_upper, "o", label="y_upper", color="fuchsia")
plt.vlines(
X,
ymin=replace_inf(y_lower, 0.01),
ymax=replace_inf(y_upper, 1000.0),
label="Range for y",
color="gray",
)
# Toy data
X = np.array([1, 2, 3, 4, 5]).reshape((-1, 1))
INF = np.inf
y_lower = np.array([10, 15, -INF, 30, 100])
y_upper = np.array([INF, INF, 20, 50, INF])
# Visualize toy data
plt.figure(figsize=(5, 4))
plot_censored_labels(X, y_lower, y_upper)
plt.ylim((6, 200))
plt.legend(loc="lower right")
plt.title("Toy data")
plt.xlabel("Input feature")
plt.ylabel("Label")
plt.yscale("log")
plt.tight_layout()
plt.show(block=True)
# Will be used to visualize XGBoost model
grid_pts = np.linspace(0.8, 5.2, 1000).reshape((-1, 1))
# Train AFT model using XGBoost
dmat = xgb.DMatrix(X)
dmat.set_float_info("label_lower_bound", y_lower)
dmat.set_float_info("label_upper_bound", y_upper)
params = {"max_depth": 3, "objective": "survival:aft", "min_child_weight": 0}
accuracy_history = []
class PlotIntermediateModel(xgb.callback.TrainingCallback):
"""Custom callback to plot intermediate models."""
def __init__(self) -> None:
super().__init__()
def after_iteration(
self,
model: xgb.Booster,
epoch: int,
evals_log: xgb.callback.TrainingCallback.EvalsLog,
) -> bool:
"""Run after training is finished."""
# Compute y_pred = prediction using the intermediate model, at current boosting
# iteration
y_pred = model.predict(dmat)
# "Accuracy" = the number of data points whose ranged label (y_lower, y_upper)
# includes the corresponding predicted label (y_pred)
acc = np.sum(
np.logical_and(y_pred >= y_lower, y_pred <= y_upper) / len(X) * 100
)
accuracy_history.append(acc)
# Plot ranged labels as well as predictions by the model
plt.subplot(5, 3, epoch + 1)
plot_censored_labels(X, y_lower, y_upper)
y_pred_grid_pts = model.predict(xgb.DMatrix(grid_pts))
plt.plot(
grid_pts, y_pred_grid_pts, "r-", label="XGBoost AFT model", linewidth=4
)
plt.title("Iteration {}".format(epoch), x=0.5, y=0.8)
plt.xlim((0.8, 5.2))
plt.ylim((1 if np.min(y_pred) < 6 else 6, 200))
plt.yscale("log")
return False
res: xgb.callback.TrainingCallback.EvalsLog = {}
plt.figure(figsize=(12, 13))
bst = xgb.train(
params,
dmat,
15,
[(dmat, "train")],
evals_result=res,
callbacks=[PlotIntermediateModel()],
)
plt.tight_layout()
plt.legend(
loc="lower center",
ncol=4,
bbox_to_anchor=(0.5, 0),
bbox_transform=plt.gcf().transFigure,
)
plt.tight_layout()
# Plot negative log likelihood over boosting iterations
plt.figure(figsize=(8, 3))
plt.subplot(1, 2, 1)
plt.plot(res["train"]["aft-nloglik"], "b-o", label="aft-nloglik")
plt.xlabel("# Boosting Iterations")
plt.legend(loc="best")
# Plot "accuracy" over boosting iterations
# "Accuracy" = the number of data points whose ranged label (y_lower, y_upper) includes
# the corresponding predicted label (y_pred)
plt.subplot(1, 2, 2)
plt.plot(accuracy_history, "r-o", label="Accuracy (%)")
plt.xlabel("# Boosting Iterations")
plt.legend(loc="best")
plt.tight_layout()
plt.show()