Note
Go to the end to download the full example code.
Example of using callbacks with Dask
from typing import Any
import numpy as np
from dask.distributed import Client, LocalCluster
from dask_ml.datasets import make_regression
from dask_ml.model_selection import train_test_split
import xgboost as xgb
import xgboost.dask as dxgb
from xgboost.dask import DaskDMatrix
def probability_for_going_backward(epoch: int) -> float:
return 0.999 / (1.0 + 0.05 * np.log(1.0 + epoch))
# All callback functions must inherit from TrainingCallback
class CustomEarlyStopping(xgb.callback.TrainingCallback):
"""A custom early stopping class where early stopping is determined stochastically.
In the beginning, allow the metric to become worse with a probability of 0.999.
As boosting progresses, the probability should be adjusted downward"""
def __init__(
self, *, validation_set: str, target_metric: str, maximize: bool, seed: int
) -> None:
self.validation_set = validation_set
self.target_metric = target_metric
self.maximize = maximize
self.seed = seed
self.rng = np.random.default_rng(seed=seed)
if maximize:
self.better = lambda x, y: x > y
else:
self.better = lambda x, y: x < y
def after_iteration(
self, model: Any, epoch: int, evals_log: xgb.callback.TrainingCallback.EvalsLog
) -> bool:
metric_history = evals_log[self.validation_set][self.target_metric]
if len(metric_history) < 2 or self.better(
metric_history[-1], metric_history[-2]
):
return False # continue training
p = probability_for_going_backward(epoch)
go_backward = self.rng.choice(2, size=(1,), replace=True, p=[1 - p, p]).astype(
np.bool_
)[0]
print(
"The validation metric went into the wrong direction. "
+ f"Stopping training with probability {1 - p}..."
)
if go_backward:
return False # continue training
else:
return True # stop training
def main(client: Client) -> None:
m = 100000
n = 100
X, y = make_regression(n_samples=m, n_features=n, chunks=200, random_state=0)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)
dtrain = DaskDMatrix(client, X_train, y_train)
dtest = DaskDMatrix(client, X_test, y_test)
output = dxgb.train(
client,
{
"verbosity": 1,
"tree_method": "hist",
"objective": "reg:squarederror",
"eval_metric": "rmse",
"max_depth": 6,
"learning_rate": 1.0,
},
dtrain,
num_boost_round=1000,
evals=[(dtrain, "train"), (dtest, "test")],
callbacks=[
CustomEarlyStopping(
validation_set="test", target_metric="rmse", maximize=False, seed=0
)
],
)
if __name__ == "__main__":
# or use other clusters for scaling
with LocalCluster(n_workers=4, threads_per_worker=1) as cluster:
with Client(cluster) as client:
main(client)