Note
Go to the end to download the full example code
Getting started with categorical data
Experimental support for categorical data.
In before, users need to run an encoder themselves before passing the data into XGBoost, which creates a sparse matrix and potentially increase memory usage. This demo showcases the experimental categorical data support, more advanced features are planned.
Also, see the tutorial for using XGBoost with categorical data.
New in version 1.5.0.
from typing import Tuple
import numpy as np
import pandas as pd
import xgboost as xgb
def make_categorical(
n_samples: int, n_features: int, n_categories: int, onehot: bool
) -> Tuple[pd.DataFrame, pd.Series]:
"""Make some random data for demo."""
rng = np.random.RandomState(1994)
pd_dict = {}
for i in range(n_features + 1):
c = rng.randint(low=0, high=n_categories, size=n_samples)
pd_dict[str(i)] = pd.Series(c, dtype=np.int64)
df = pd.DataFrame(pd_dict)
label = df.iloc[:, 0]
df = df.iloc[:, 1:]
for i in range(0, n_features):
label += df.iloc[:, i]
label += 1
df = df.astype("category")
categories = np.arange(0, n_categories)
for col in df.columns:
df[col] = df[col].cat.set_categories(categories)
if onehot:
return pd.get_dummies(df), label
return df, label
def main() -> None:
# Use builtin categorical data support
# For scikit-learn interface, the input data must be pandas DataFrame or cudf
# DataFrame with categorical features
X, y = make_categorical(100, 10, 4, False)
# Specify `enable_categorical` to True, also we use onehot encoding based split
# here for demonstration. For details see the document of `max_cat_to_onehot`.
reg = xgb.XGBRegressor(
tree_method="gpu_hist", enable_categorical=True, max_cat_to_onehot=5
)
reg.fit(X, y, eval_set=[(X, y)])
# Pass in already encoded data
X_enc, y_enc = make_categorical(100, 10, 4, True)
reg_enc = xgb.XGBRegressor(tree_method="gpu_hist")
reg_enc.fit(X_enc, y_enc, eval_set=[(X_enc, y_enc)])
reg_results = np.array(reg.evals_result()["validation_0"]["rmse"])
reg_enc_results = np.array(reg_enc.evals_result()["validation_0"]["rmse"])
# Check that they have same results
np.testing.assert_allclose(reg_results, reg_enc_results)
# Convert to DMatrix for SHAP value
booster: xgb.Booster = reg.get_booster()
m = xgb.DMatrix(X, enable_categorical=True) # specify categorical data support.
SHAP = booster.predict(m, pred_contribs=True)
margin = booster.predict(m, output_margin=True)
np.testing.assert_allclose(
np.sum(SHAP, axis=len(SHAP.shape) - 1), margin, rtol=1e-3
)
if __name__ == "__main__":
main()
Total running time of the script: ( 0 minutes 0.000 seconds)