Getting started with categorical data

Experimental support for categorical data.

In before, users need to run an encoder themselves before passing the data into XGBoost, which creates a sparse matrix and potentially increase memory usage. This demo showcases the experimental categorical data support, more advanced features are planned.

Added in version 1.5.0.

See Also

from typing import Tuple

import numpy as np
import pandas as pd

import xgboost as xgb


def make_categorical(
    n_samples: int, n_features: int, n_categories: int, onehot: bool
) -> Tuple[pd.DataFrame, pd.Series]:
    """Make some random data for demo."""
    rng = np.random.RandomState(1994)

    pd_dict = {}
    for i in range(n_features + 1):
        c = rng.randint(low=0, high=n_categories, size=n_samples)
        pd_dict[str(i)] = pd.Series(c, dtype=np.int64)

    df = pd.DataFrame(pd_dict)
    label = df.iloc[:, 0]
    df = df.iloc[:, 1:]
    for i in range(0, n_features):
        label += df.iloc[:, i]
    label += 1

    df = df.astype("category")
    categories = np.arange(0, n_categories)
    for col in df.columns:
        df[col] = df[col].cat.set_categories(categories)

    if onehot:
        return pd.get_dummies(df), label
    return df, label


def main() -> None:
    # Use builtin categorical data support

    # For scikit-learn interface, the input data should be pandas DataFrame or cudf
    # DataFrame with categorical features. If an numpy/cupy array is used instead, the
    # `feature_types` for `XGBRegressor` should be set accordingly.
    X, y = make_categorical(100, 10, 4, False)
    # Specify `enable_categorical` to True, also we use onehot-encoding-based split here
    # for demonstration. For details see the document of `max_cat_to_onehot`.
    reg = xgb.XGBRegressor(
        tree_method="hist", enable_categorical=True, max_cat_to_onehot=5, device="cuda"
    )
    reg.fit(X, y, eval_set=[(X, y)])

    # Pass in already encoded data
    X_enc, y_enc = make_categorical(100, 10, 4, True)
    reg_enc = xgb.XGBRegressor(tree_method="hist", device="cuda")
    reg_enc.fit(X_enc, y_enc, eval_set=[(X_enc, y_enc)])

    reg_results = np.array(reg.evals_result()["validation_0"]["rmse"])
    reg_enc_results = np.array(reg_enc.evals_result()["validation_0"]["rmse"])

    # Check that they have same results
    np.testing.assert_allclose(reg_results, reg_enc_results)

    # Convert to DMatrix for SHAP value
    booster: xgb.Booster = reg.get_booster()
    m = xgb.DMatrix(X, enable_categorical=True)  # specify categorical data support.
    SHAP = booster.predict(m, pred_contribs=True)
    margin = booster.predict(m, output_margin=True)
    np.testing.assert_allclose(
        np.sum(SHAP, axis=len(SHAP.shape) - 1), margin, rtol=1e-3
    )


if __name__ == "__main__":
    main()

Gallery generated by Sphinx-Gallery