Experimental support for distributed training with external memory

Added in version 3.0.0.

See the tutorial for more details. To run the example, following packages in addition to XGBoost native dependencies are required:

  • scikit-learn

  • loky

If device is cuda, following are also needed:

  • cupy

  • python-cuda

  • rmm

import argparse
import multiprocessing as mp
import os
import tempfile
from functools import partial, update_wrapper
from typing import Callable, List, Tuple

import numpy as np
from loky import get_reusable_executor
from sklearn.datasets import make_regression

import xgboost
from xgboost import collective as coll
from xgboost.tracker import RabitTracker


def make_batches(
    n_samples_per_batch: int, n_features: int, n_batches: int, tmpdir: str, rank: int
) -> List[Tuple[str, str]]:
    files: List[Tuple[str, str]] = []
    rng = np.random.RandomState(rank)
    for i in range(n_batches):
        X, y = make_regression(n_samples_per_batch, n_features, random_state=rng)
        X_path = os.path.join(tmpdir, f"X-r{rank}-{i}.npy")
        y_path = os.path.join(tmpdir, f"y-r{rank}-{i}.npy")
        np.save(X_path, X)
        np.save(y_path, y)
        files.append((X_path, y_path))
    return files


class Iterator(xgboost.DataIter):
    """A custom iterator for loading files in batches."""

    def __init__(self, device: str, file_paths: List[Tuple[str, str]]) -> None:
        self.device = device

        self._file_paths = file_paths
        self._it = 0
        # XGBoost will generate some cache files under the current directory with the
        # prefix "cache"
        super().__init__(cache_prefix=os.path.join(".", "cache"))

    def load_file(self) -> Tuple[np.ndarray, np.ndarray]:
        """Load a single batch of data."""
        X_path, y_path = self._file_paths[self._it]
        # When the `ExtMemQuantileDMatrix` is used, the device must match. GPU cannot
        # consume CPU input data and vice-versa.
        if self.device == "cpu":
            X = np.load(X_path)
            y = np.load(y_path)
        else:
            X = cp.load(X_path)
            y = cp.load(y_path)

        assert X.shape[0] == y.shape[0]
        return X, y

    def next(self, input_data: Callable) -> bool:
        """Advance the iterator by 1 step and pass the data to XGBoost.  This function
        is called by XGBoost during the construction of ``DMatrix``

        """
        if self._it == len(self._file_paths):
            # return False to let XGBoost know this is the end of iteration
            return False

        # input_data is a keyword-only function passed in by XGBoost and has the similar
        # signature to the ``DMatrix`` constructor.
        X, y = self.load_file()
        input_data(data=X, label=y)
        self._it += 1
        return True

    def reset(self) -> None:
        """Reset the iterator to its beginning"""
        self._it = 0


def setup_rmm() -> None:
    """Setup RMM for GPU-based external memory training."""
    import rmm
    from rmm.allocators.cupy import rmm_cupy_allocator

    if not xgboost.build_info()["USE_RMM"]:
        return

    try:
        # Use the arena pool if available
        from cuda.bindings import runtime as cudart
        from rmm.mr import ArenaMemoryResource

        status, free, total = cudart.cudaMemGetInfo()
        if status != cudart.cudaError_t.cudaSuccess:
            raise RuntimeError(cudart.cudaGetErrorString(status))

        mr = rmm.mr.CudaMemoryResource()
        mr = ArenaMemoryResource(mr, arena_size=int(total * 0.9))
    except ImportError:
        # The combination of pool and async is by design. As XGBoost needs to allocate
        # large pages repeatly, it's not easy to handle fragmentation. We can use more
        # experiments here.
        mr = rmm.mr.PoolMemoryResource(rmm.mr.CudaAsyncMemoryResource())
        rmm.mr.set_current_device_resource(mr)
    # Set the allocator for cupy as well.
    cp.cuda.set_allocator(rmm_cupy_allocator)


def hist_train(worker_idx: int, tmpdir: str, device: str, rabit_args: dict) -> None:
    """The hist tree method can use a special data structure `ExtMemQuantileDMatrix` for
    faster initialization and lower memory usage.

    """

    # Make sure XGBoost is using RMM for all allocations.
    with coll.CommunicatorContext(**rabit_args), xgboost.config_context(use_rmm=True):
        # Generate the data for demonstration. The sythetic data is sharded by workers.
        files = make_batches(
            n_samples_per_batch=4096,
            n_features=16,
            n_batches=17,
            tmpdir=tmpdir,
            rank=coll.get_rank(),
        )
        # Since we are running two workers on a single node, we should divide the number
        # of threads between workers.
        n_threads = os.cpu_count()
        assert n_threads is not None
        n_threads = max(n_threads // coll.get_world_size(), 1)
        it = Iterator(device, files)
        Xy = xgboost.ExtMemQuantileDMatrix(
            it, missing=np.nan, enable_categorical=False, nthread=n_threads
        )
        # Check the device is correctly set.
        if device == "cuda":
            assert int(os.environ["CUDA_VISIBLE_DEVICES"]) < coll.get_world_size()
        booster = xgboost.train(
            {
                "tree_method": "hist",
                "max_depth": 4,
                "device": it.device,
                "nthread": n_threads,
            },
            Xy,
            evals=[(Xy, "Train")],
            num_boost_round=10,
        )
        booster.predict(Xy)


def main(tmpdir: str, args: argparse.Namespace) -> None:
    n_workers = 2

    tracker = RabitTracker(host_ip="127.0.0.1", n_workers=n_workers)
    tracker.start()
    rabit_args = tracker.worker_args()

    def initializer(device: str) -> None:
        # Set CUDA device before launching child processes.
        if device == "cuda":
            # name: LokyProcess-1
            lop, sidx = mp.current_process().name.split("-")
            idx = int(sidx)  # 1-based indexing from loky
            os.environ["CUDA_VISIBLE_DEVICES"] = str(idx - 1)
            setup_rmm()

    with get_reusable_executor(
        max_workers=n_workers, initargs=(args.device,), initializer=initializer
    ) as pool:
        # Poor man's currying
        fn = update_wrapper(
            partial(
                hist_train, tmpdir=tmpdir, device=args.device, rabit_args=rabit_args
            ),
            hist_train,
        )
        pool.map(fn, range(n_workers))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--device", choices=["cpu", "cuda"], default="cpu")
    args = parser.parse_args()
    if args.device == "cuda":
        import cupy as cp

        # It's important to use RMM with `CudaAsyncMemoryResource`. for GPU-based
        # external memory to improve performance. If XGBoost is not built with RMM
        # support, a warning is raised when constructing the `DMatrix`.
        setup_rmm()
        with tempfile.TemporaryDirectory() as tmpdir:
            main(tmpdir, args)
    else:
        with tempfile.TemporaryDirectory() as tmpdir:
            main(tmpdir, args)

Gallery generated by Sphinx-Gallery