Note
Go to the end to download the full example code.
Demo for using data iterator with Quantile DMatrix
Added in version 1.2.0.
The demo that defines a customized iterator for passing batches of data into
xgboost.QuantileDMatrix
and use this QuantileDMatrix
for
training. The feature is used primarily designed to reduce the required GPU
memory for training on distributed environment.
Aftering going through the demo, one might ask why don’t we use more native Python iterator? That’s because XGBoost requires a reset function, while using itertools.tee might incur significant memory usage according to:
import cupy
import numpy
import xgboost
COLS = 64
ROWS_PER_BATCH = 1000 # data is splited by rows
BATCHES = 32
class IterForDMatrixDemo(xgboost.core.DataIter):
"""A data iterator for XGBoost DMatrix.
`reset` and `next` are required for any data iterator, other functions here
are utilites for demonstration's purpose.
"""
def __init__(self):
"""Generate some random data for demostration.
Actual data can be anything that is currently supported by XGBoost.
"""
self.rows = ROWS_PER_BATCH
self.cols = COLS
rng = cupy.random.RandomState(numpy.uint64(1994))
self._data = [rng.randn(self.rows, self.cols)] * BATCHES
self._labels = [rng.randn(self.rows)] * BATCHES
self._weights = [rng.uniform(size=self.rows)] * BATCHES
self.it = 0 # set iterator to 0
super().__init__()
def as_array(self):
return cupy.concatenate(self._data)
def as_array_labels(self):
return cupy.concatenate(self._labels)
def as_array_weights(self):
return cupy.concatenate(self._weights)
def data(self):
"""Utility function for obtaining current batch of data."""
return self._data[self.it]
def labels(self):
"""Utility function for obtaining current batch of label."""
return self._labels[self.it]
def weights(self):
return self._weights[self.it]
def reset(self):
"""Reset the iterator"""
self.it = 0
def next(self, input_data):
"""Yield next batch of data."""
if self.it == len(self._data):
# Return 0 when there's no more batch.
return 0
input_data(data=self.data(), label=self.labels(), weight=self.weights())
self.it += 1
return 1
def main():
rounds = 100
it = IterForDMatrixDemo()
# Use iterator, must be `QuantileDMatrix`.
# In this demo, the input batches are created using cupy, and the data processing
# (quantile sketching) will be performed on GPU. If data is loaded with CPU based
# data structures like numpy or pandas, then the processing step will be performed
# on CPU instead.
m_with_it = xgboost.QuantileDMatrix(it)
# Use regular DMatrix.
m = xgboost.DMatrix(
it.as_array(), it.as_array_labels(), weight=it.as_array_weights()
)
assert m_with_it.num_col() == m.num_col()
assert m_with_it.num_row() == m.num_row()
# Tree meethod must be `hist`.
reg_with_it = xgboost.train(
{"tree_method": "hist", "device": "cuda"},
m_with_it,
num_boost_round=rounds,
evals=[(m_with_it, "Train")],
)
predict_with_it = reg_with_it.predict(m_with_it)
reg = xgboost.train(
{"tree_method": "hist", "device": "cuda"},
m,
num_boost_round=rounds,
evals=[(m, "Train")],
)
predict = reg.predict(m)
if __name__ == "__main__":
main()